Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Antiballistic missiles (ABMs) are designed to have very large accelerations so that they may intercept fast-moving incoming missiles in the short time available. What is the takeoff acceleration of a \(10,000\;kg\) ABM that expels \(196\;kg\) of gas per second at an exhaust velocity of\(2.50 \times {10^3}\;kg\)?

Short Answer

Expert verified

The takeoff acceleration is\({\rm{39}}{\rm{.2}}\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).

Step by step solution

01

Definition of Acceleration

The rate at which velocity changes is referred to as acceleration.

02

Given Data

The mass of ABM is\({{\rm{m}}_{\rm{1}}}{\rm{ = 10000}}\;{\rm{kg}}\).

The expulsion rate is\(\dfrac{{{\rm{dm}}}}{{{\rm{dt}}}}{\rm{ = 196}}\;{\rm{kg/s}}\).

The exhaust velocity of ABM is \({{\rm{v}}_{\rm{g}}}{\rm{ = 2}}{\rm{.50 \times 1}}{{\rm{0}}^{\rm{3}}}\;{\rm{m/s}}\).

03

Calculation of Acceleration

Using the conservation of momentum along vertical direction we get,

\({\rm{Fdt = }}{{\rm{P}}_{\rm{f}}}{\rm{ - }}{{\rm{P}}_{\rm{i}}}\)

So,

\(\begin{aligned}{\rm{ - mg = m}}\dfrac{{{\rm{dv}}}}{{{\rm{dt}}}}{\rm{ - }}{{\rm{v}}_{\rm{g}}}\dfrac{{{\rm{dm}}}}{{{\rm{dt}}}}\\\dfrac{{{\rm{dv}}}}{{{\rm{dt}}}}{\rm{ = }}\dfrac{{{{\rm{v}}_{\rm{g}}}\dfrac{{{\rm{dm}}}}{{{\rm{dt}}}}{\rm{ - mg}}}}{{\rm{m}}}\end{aligned}\)

Substituting the values we get,

\(\dfrac{{dv}}{{dt}} = \,a\, = \dfrac{{\left( {{\rm{2}}{\rm{.50 \times 1}}{{\rm{0}}^{\rm{3}}}\;{\rm{m/s}}} \right){\rm{ \times }}\left( {{\rm{196}}\,{\rm{kg/s}}} \right){\rm{ - }}\left( {{\rm{10000}}\,{\rm{kg}}} \right){\rm{ \times }}\left( {{\rm{9}}{\rm{.8}}\,{\rm{m/}}{{\rm{s}}^2}} \right)}}{{\left( {{\rm{10000}}\,{\rm{kg}}} \right)}}\)

\({\rm{ = 39}}{\rm{.2}}\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\)

Hence, the required acceleration is\({\rm{39}}{\rm{.2}}\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free