(a)
From equation\({\rm{(3)}}\), the number of emitted photons per second is obtained as:
\(\begin{align}{}n & = \frac{{50.0 \times {{10}^3}\;{\rm{W}}}}{{4.31 \times {{10}^{ - 28}}\;{\rm{J}}}}\\& = \frac{{50.0 \times {{10}^3}\;\;{\rm{J\;}} \cdot {{\rm{s}}^{ - {\rm{1}}}}}}{{4.31 \times {{10}^{ - 28}}\;{\rm{J}}}}\\ & = 1.16 \times {10^{32}}\;{\rm{photons}} \cdot {\rm{s}}{{\rm{ }}^{ - {\rm{1}}}}\end{align}\)
Therefore, from equation\((4)\), it is obtained –
\(\phi = \frac{n}{{4\pi {r^2}}}\) ….. (5)
Rewrite the expression for \(r\) as follows:
\(r = \sqrt {\frac{n}{{4\pi \phi }}} \) ……. (6)
Here given that the photon flux received by the receiving object is as follows:\(\phi = 1.00{\rm{ photon}}\;{{\rm{m}}^{ - 2}} \cdot {{\rm{s}}^{ - 1}}\)
Solve for the radius as:
\(\begin{array}{c}r = \sqrt {\frac{{{\rm{1}}{\rm{.16}} \times {\rm{1}}{{\rm{0}}^{{\rm{32}}}}{\rm{ photon}}{{\rm{s}}^{ - {\rm{1}}}}}}{{{\rm{4}} \times \pi \times {\rm{1}}{\rm{.00 photo}}{{\rm{n}}^{ - {\rm{2}}}}{\rm{\;}} \cdot {{\rm{s}}^{ - {\rm{1}}}}}}} \\ = {\rm{3}}{\rm{.04}} \times {\rm{1}}{{\rm{0}}^{{\rm{15}}}}\;{\rm{m}}\end{array}\)
Since, \({\rm{1}}{\rm{.00}}\;{\rm{ly}} = {\rm{9}}{\rm{.461}} \times {\rm{1}}{{\rm{0}}^{{\rm{15}}}}\;{\rm{m}}\)
Solve further as,
\(\begin{array}{c}r = 3.04 \times {10^{15}}\;{\rm{m}} \times \frac{{1.00\;{\rm{ly}}}}{{9.461 \times {{10}^{15}}\;{\rm{\;m}}}}\\ = 0.321\;\;{\rm{m}}\end{array}\)
Therefore, the value for distance is obtained as \(r = 0.321\;{\rm{ly}}\).