Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If you place 0oCice into 0oC water in an insulated container, what will happen? Will some ice melt, will more water freeze, or will neither take place?

Short Answer

Expert verified

At 0oC the amount of ice melted and the amount of frozen water are the same.

Step by step solution

01

Define freezing point and melting point

The temperature at which a liquid transform into a solid is called the "freezing point," and the temperature at which a solid transform into a liquid is called the "melting point." The melting point and boiling point of a substance are the same. The melting point of ice and the freezing point of water is 0oC

02

Describe what happens in this scenario

In this scenario, the temperature is set at 0oC Since this is the melting point, the ice will change into water. This is also the freezing point of water, so water will turn into ice. Therefore, the amount of water transformed into ice and the amount of ice transformed into water is the same.

So, the melting of ice and the freezing of water take place at the same rate.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Freeze-dried foods have been dehydrated in a vacuum. During the process, the food freezes and must be heated to facilitate dehydration. Explain both how the vacuum speeds up dehydration and why the food freezes as a result.

(a) Calculate the rate of heat transfer by radiation from a car radiator at 110°C into a 50.0ºC environment, if the radiator has an emissivity of 0.750 and a\({\bf{1}}{\bf{.20}}\;{{\bf{m}}^{\bf{2}}}\)surface area. (b) Is this a significant fraction of the heat transfer by an automobile engine? To answer this, assume a horsepower of 200 hp (1.5 kW) and the efficiency of automobile engines as 25%.

The Sun radiates like a perfect black body with an emissivity of exactly 1. (a) Calculate the surface temperature of the Sun, given that it is a sphere with a\({\bf{7}}{\bf{.00 \times 1}}{{\bf{0}}^{\bf{8}}}\;{\bf{m}}\)radius that radiates\({\bf{3}}{\bf{.80 \times 1}}{{\bf{0}}^{{\bf{26}}}}{\bf{ W}}\)into 3-K space. (b) How much power does the Sun radiate per square meter of its surface? (c) How much power in watts per square meter is that value at the distance of Earth,\({\bf{1}}{\bf{.50 \times 1}}{{\bf{0}}^{{\bf{11}}}}{\bf{ m}}\)away? (This number is called the solar constant.)

How is heat transfer related to temperature?

A large body of lava from a volcano has stopped flowing and is slowly cooling. The interior of the lava is at 1200ºC , its surface is at 450ºC , and the surroundings are at 27.0ºC . (a) Calculate the rate at which energy is transferred by radiation from\({\bf{1}}{\bf{.00 }}{{\bf{m}}^{\bf{2}}}\)of surface lava into the surroundings, assuming the emissivity is 1.00. (b) Suppose heat conduction to the surface occurs at the same rate. What is the thickness of the lava between the 450ºC surface and the 1200ºC interior, assuming that the lava’s conductivity is the same as that of brick?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free