Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Assuming a circular orbit for the Sun about the center of the Milky Way galaxy, calculate its orbital speed using the following information: The mass of the galaxy is equivalent to a single mass\({\rm{1}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{11}}}}\)times that of the Sun (or\({\rm{3 \times 1}}{{\rm{0}}^{{\rm{41}}}}{\rm{ kg}}\)), located\({\rm{30,000 ly}}\)away.

Short Answer

Expert verified

The orbital speed is then obtained as: \({\rm{2}}{\rm{.65 \times 1}}{{\rm{0}}^{\rm{5}}}{\rm{ m}}{{\rm{s}}^{{\rm{ - 1}}}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Centripetal force and Newton’s law of gravitation.

The force acting between two particles is given by Newton’s law of gravitation,

\(F = G\frac{{{m_1}{m_2}}}{{{r^2}}}\)

Here\(F\)is the force acting between two particles,\({m_1}\)and\({m_2}\)are the masses of the particle,\(G\)is the universal gravitational constant and\(r\)is the distance between the masses.

The centripetal force is given by,

\({F_c} = m\frac{{{v^2}}}{r}\)

Here\(m\)is the mass,\(v\)is the velocity and\(r\)is the radius of the circular path.

02

Evaluating the orbital speed

The Sun is said to be in a stable circular orbit around the center of the Milky Way as the force of gravitational attraction as:

\({F_g} = G\frac{{{M_S}{M_G}}}{{{r^2}}}\)....... (i)

It must be equal to the centripetal force required to keep it in a circular trajectory as:

\({F_{ep}} = {M_S}\frac{{{v^2}}}{r}\)...... (ii)

The value of \({{\rm{M}}_{\rm{S}}}\) denotes the mass of the Sun.

Also, the value \({M_G} = {\rm{1}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{11}}}}{\rm{ }}{M_S}\) denotes the mass of the whole galaxy.

Combining the first and the second equation, we get:

\(\begin{array}{c}\frac{{{v^2}}}{r}{M_S} = G\frac{{{M_S}{M_G}}}{{{r^2}}}\\{v^2} = G\frac{{{M_G}}}{r}\\v = \sqrt {G\frac{{{M_G}}}{r}} \end{array}\)

Putting the values into the third equation and using \({\rm{1 ly = 9}}{\rm{.46 x 1}}{{\rm{0}}^{\rm{5}}}{\rm{ m}}\), we get:

\(\begin{array}{c}v{\rm{ }} = {\rm{ }}\sqrt {{\rm{(6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{ - 11}}}}{{\rm{m}}^{\rm{3}}}{\rm{k}}{{\rm{g}}^{{\rm{ - 1}}}}{{\rm{s}}^{{\rm{ - 1}}}}{\rm{)}}\frac{{{\rm{(3 \times 1}}{{\rm{0}}^{{\rm{41}}}}{\rm{kg)}}}}{{{\rm{(30,000 \times 9}}{\rm{.46 \times 1}}{{\rm{0}}^{{\rm{15}}}}{\rm{m)}}}}} \\ = {\rm{2}}{\rm{.65 \times 1}}{{\rm{0}}^{\rm{5}}}{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\end{array}\)

Therefore, the orbital speed is \({\rm{2}}{\rm{.65 \times 1}}{{\rm{0}}^{\rm{5}}}\,{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free