Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The decay of one type of \({\rm{K}}\)-meson is cited as evidence that nature favours matter over antimatter. Since mesons are composed of a quark and an antiquark, is it surprising that they would preferentially decay to one type over another? Is this an asymmetry in nature? Is the predominance of matter over antimatter an asymmetry?

Short Answer

Expert verified

We would expect the kaon to decay into both types with equal probability, so this observation demonstrates an asymmetry in nature and contributes to efforts to explain the large asymmetry of matter's dominance over antimatter in the universe.

Step by step solution

01

Definition of mesons.

Generally, the matter is made up of matter but every matter contains constituent antimatter particle. The decay of one K-mesons preferentially creates matter over antimatter.

02

 Step 2: Finding whether mesons decay into one type over another?

Matter and antimatter should be equivalent pairs of opposing quantum numbers, just as a positive charge is neither better nor worse than a negative charge. This is why we expect a K-meson, especially a long-lived neutral kaon composed symmetrically of a quark-antiquark, to decay with equal probability into a "matter heavy" path and a "antimatter heavy" path. This was not noticed. With a higher probability, the -meson decays into the "matter heavy" path.

This was the first indication of a violation of CP symmetry. Because CP symmetry states that the physics should be the same in both C-symmetry (particle-antiparticle interchange) and P-symmetry (parity change, coordinate inversion) at the same time, its violation is important in attempts to explain the predominance.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Use the Heisenberg uncertainty principle to calculate the uncertainty in energy for a corresponding time interval of\({\rm{1}}{{\rm{0}}^{{\rm{ - 43}}}}{\rm{ s}}\). (b) Compare this energy with the\({\rm{1}}{{\rm{0}}^{{\rm{19}}}}{\rm{ GeV}}\)unification-of-forces energy and discuss why they are similar.

If neutrino oscillations do occur, will they violate conservation of the various lepton family numbers (\({{\rm{L}}_{\rm{e}}}\),\({{\rm{L}}_{\rm{\mu }}}\), and \({{\rm{L}}_{\rm{T}}}\))? Will neutrino oscillations violate conservation of the total number of leptons?

Quantum gravity, if developed, would be an improvement on both general relativity and quantum mechanics, but more mathematically difficult. Under what circumstances would it be necessary to use quantum gravity? Similarly, under what circumstances could general relativity be used? When could special relativity, quantum mechanics, or classical physics be used?

Our solar system orbits the center of the Milky Way galaxy. Assuming a circular orbit\({\rm{30,000 ly}}\)in radius and an orbital speed of\({\rm{250 km/s}}\),how many years does it take for one revolution? Note that this is approximate, assuming constant speed and circular orbit, but it is representative of the time for our system and local stars to make one revolution around the galaxy.

Distances to local galaxies are determined by measuring the brightness of stars, called Cepheid variables, that can be observed individually and that have absolute brightness at a standard distance that are well known. Explain how the measured brightness would vary with distance as compared with the absolute brightness.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free