Chapter 34: Q5PE (page 1238)
On average, how far away are galaxies that are moving away from us at\({\rm{2}}{\rm{.0 \% }}\)of the speed of light?
Short Answer
The direction is obtained as: \(d{\rm{ = 300 Mly}}\).
Chapter 34: Q5PE (page 1238)
On average, how far away are galaxies that are moving away from us at\({\rm{2}}{\rm{.0 \% }}\)of the speed of light?
The direction is obtained as: \(d{\rm{ = 300 Mly}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeAssuming a circular orbit for the Sun about the center of the Milky Way galaxy, calculate its orbital speed using the following information: The mass of the galaxy is equivalent to a single mass\({\rm{1}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{11}}}}\)times that of the Sun (or\({\rm{3 \times 1}}{{\rm{0}}^{{\rm{41}}}}{\rm{ kg}}\)), located\({\rm{30,000 ly}}\)away.
Distances to local galaxies are determined by measuring the brightness of stars, called Cepheid variables, that can be observed individually and that have absolute brightness at a standard distance that are well known. Explain how the measured brightness would vary with distance as compared with the absolute brightness.
Using data from the previous problem, find the increase in rotational kinetic energy, given the coreโs mass is\({\rm{1}}{\rm{.3}}\)times that of our Sun. Where does this increase in kinetic energy come from?
Olbersโs paradox poses an interesting question: If the universe is infinite, then any line of sight should eventually fall on a starโs surface. Why then is the sky dark at night? Discuss the commonly accepted evolution of the universe as a solution to this paradox.
(a) What is the approximate speed relative to us of a galaxy near the edge of the known universe, some\({\rm{10 Gly}}\)away? (b) What fraction of the speed of light is this? Note that we have observed galaxies moving away from us at greater than\({\rm{0}}{\rm{.9c}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.