Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Assume the average density of the universe is\({\rm{0}}{\rm{.1}}\)of the critical density needed for closure. What is the average number of protons per cubic meter, assuming the universe is composed mostly of hydrogen?

Short Answer

Expert verified

The average number of protons per cubic metre is obtained as: \({\rm{0}}{\rm{.6 }}{{\rm{m}}^{{\rm{ - 3}}}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Expression for the average number of protons per cubic meter

The average number of protons per cubic meter is calculated by,

\(\overline N = \frac{{{\rho _c}\left( {0.10} \right)}}{{{m_p}}}\)

Here\(\overline N \) is the number of protons per cubic meter,\({\rho _c}\)is the critical density,\({m_p}\)is the mass of proton.

02

Evaluating the number of protons

With the help of the previous question, infer:

\({\rho _{closure}}{\rm{ }} = {\rm{1}}{{\rm{0}}^{{\rm{ - 26}}}}\,{\rm{kg/}}{{\rm{m}}^{\rm{3}}}\)

Then, the density will be:

\(\begin{align}\rho &= {\rm{0}}{\rm{.1 }}{\rho _{closure}} \\ &= {\rm{1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{ kg/}}{{\rm{m}}^3}\end{align}\)

The mass per cubic meter is\(m{\rm{ }} = {\rm{ 1}}{{\rm{0}}^{{\rm{ - 27}}}}\,{\rm{kg/}}{{\rm{m}}^3}\).

The number of protons is then evaluated as:

\(\begin{align}\overline N {\rm{ }} &= {\rm{ }}\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{ kg/}}{{\rm{m}}^3}}}{{{\rm{1}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{kg}}}}{\rm{ }}\\ &= {\rm{ 0}}{\rm{.60 per cubic metre}}\end{align}\)

Therefore, the average number of protons per cubic metre is \({\rm{0}}{\rm{.6 }}{{\rm{m}}^{{\rm{ - 3}}}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free