Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Supermassive black holes are thought to exist at the center of many galaxies. (a) What is the radius of such an object if it has a mass of\({\rm{1}}{{\rm{0}}^{\rm{9}}}\)Suns? (b) What is this radius in light years?

Short Answer

Expert verified
  1. The radius of object is obtained as: \({\rm{2}}{\rm{.97 \times 1}}{{\rm{0}}^{{\rm{12}}}}{\rm{ m}}\).
  2. The radius in light years is obtained as: \({\rm{3}}{\rm{.13 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{ ly}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Schwarzschild radius

The Schwarzschild radius is given by,

\({R_s} = \frac{{2GM}}{{{c^2}}}\)

Here\({R_s}\)is the Schwarzschild radius,\(G\)is the universal gravitational constant,\(M\)is the mass of the black hole,\(c\)is the speed of the light.

02

Evaluating the radius of the object

(a)

The Schwarzschild radius of a supermassive black hole is evaluated.

It has a mass,\({\rm{M = 1}}{{\rm{0}}^{\rm{9}}}{{\rm{M}}_{{\rm{sun}}}}\), then the radius is calculated by,

\(\begin{align}{R_s} &= \frac{{2GM}}{{{c^2}}}\\ &= {\rm{ }}\frac{{{\rm{2 \times 6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{ - 11}}}}\frac{{{\rm{N}}{{\rm{m}}^{\rm{2}}}}}{{{\rm{k}}{{\rm{g}}^{\rm{2}}}}}{\rm{ \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ \times 2 \times 1}}{{\rm{0}}^{{\rm{30}}}}{\rm{kg}}}}{{{{{\rm{(3 \times 1}}{{\rm{0}}^{\rm{8}}}\frac{{\rm{m}}}{{\rm{s}}}{\rm{)}}}^{\rm{2}}}}}{\rm{ }}\\ &= {\rm{ 2}}{\rm{.97 \times 1}}{{\rm{0}}^{{\rm{12}}}}{\rm{m}}\end{align}\)

Therefore, the radius of the object is\({\rm{2}}{\rm{.97 \times 1}}{{\rm{0}}^{{\rm{12}}}}{\rm{ m}}\).

03

Evaluating the radius in light years

(b)

The radius is obtained as:

\(\begin{align}{R_s} &= {\rm{ 2}}{\rm{.97 \times 1}}{{\rm{0}}^{{\rm{12}}}}{\rm{m}}\frac{{{\rm{1ly}}}}{{{\rm{9}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{15}}}}{\rm{m}}}}{\rm{ }}\\ &= {\rm{ 3}}{\rm{.13 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{ ly}}\end{align}\)

Therefore, the radius in light years is \({\rm{3}}{\rm{.13 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{ ly}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free