Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Using data from the previous problem, find the increase in rotational kinetic energy, given the core’s mass is\({\rm{1}}{\rm{.3}}\)times that of our Sun. Where does this increase in kinetic energy come from?

Short Answer

Expert verified

The required increase in rotation kinetic energy is \({\rm{1}}{\rm{.90}} \times {\rm{1}}{{\rm{0}}^{45}}\,{\rm{J}}\).

Step by step solution

01

Kinetic energy and moment of inertia

The expression for the rotational kinetic energy is given by,

\(KE = \frac{1}{2}I{\omega ^2}\) …… (i)

Here\(I\)is the moment of inertia,\(\omega \)is the angular frequency and\(KE\)is the kinetic energy.

The moment of a spherical part like star can be given by,

\(I = \frac{2}{5}M{r^2}\) …… (ii)

Here\(M\)is the mass of the star and\(r\)is the radius of the star.

The expression for the angular frequency is given by,

\(\omega = 2\pi f\)…… (iii)

Here\(f\)is the frequency.

02

Evaluating the increase in rotational kinetic energy

Substitute \(\frac{2}{5}M{r^2}\) for \(I\) and \(2\pi f\) for \(\omega \) into the equation (i)

\(KE = \frac{1}{2}\left( {\frac{2}{5}M{r^2}} \right){\left( {2\pi f} \right)^2}\)…… (iv)

Calculate initial kinetic energy,

Substitute\(5 \times {10^8}\,{\rm{m}}\)for\(r\),\(1.3 \times 1.99 \times {10^{30}}\,{\rm{kg}}\)for\(M\)and\(3.858 \times {10^{ - 7}}\,{\rm{s}}\)for\(f\)into the equation (iv)

\(\begin{array}{c}K{E_i} &= \frac{1}{2}\left( {1.3} \right)\left( {1.99 \times {{10}^{30}}\,{\rm{kg}}} \right){\left( {5.0 \times {{10}^8}\,{\rm{m}}} \right)^2}{\left( {2\pi } \right)^2}{\left( {3.858 \times {{10}^{ - 7}}\,{{\rm{s}}^{{\rm{ - 1}}}}} \right)^2}\\ &= 7.60 \times {10^{35}}\,{\rm{J}}\end{array}\)

Calculate the final kinetic energy,

Substitute\(10 \times {10^3}\,{\rm{m}}\)for\(r\),\(1.3 \times 1.99 \times {10^{30}}\,{\rm{kg}}\)for\(M\)and\(964.5\,{\rm{rev/s}}\)for\(f\)into the equation (iv)

\(\begin{array}{c}K{E_f} &= \frac{1}{2}\left( {1.3} \right)\left( {1.99 \times {{10}^{30}}\,{\rm{kg}}} \right){\left( {10.0 \times {{10}^3}\,{\rm{m}}} \right)^2}{\left( {2\pi } \right)^2}{\left( {964.5\,{{\rm{s}}^{{\rm{ - 1}}}}} \right)^2}\\ &= 1.90 \times {10^{45}}\,{\rm{J}}\end{array}\)

Calculate the increase in kinetic energy,

\(\begin{array}{c}\Delta KE &= K{E_f} - K{E_i}\\ &= 1.90 \times {10^{45}}\,{\rm{J}}\, - 7.60 \times {10^{35}}\,{\rm{J}}\\ &= {\rm{1}}{\rm{.90}} \times {\rm{1}}{{\rm{0}}^{45}}\,{\rm{J}}\end{array}\)

Therefore the required increase in rotation kinetic energy is \({\rm{1}}{\rm{.90}} \times {\rm{1}}{{\rm{0}}^{45}}\,{\rm{J}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explain why it only appears that we are at the centre of expansion of the universe and why an observer in another galaxy would see the same relative motion of all but the closest galaxies away from her.

Find the approximate mass of the dark and luminous matter in the Milky Way galaxy. Assume the luminous matter is due to approximately \({\rm{1}}{{\rm{0}}^{{\rm{11}}}}\) stars of average mass \({\rm{1}}{\rm{.5}}\) times that of our Sun, and take the dark matter to be \({\rm{10}}\) times as massive as the luminous matter.

Our solar system orbits the center of the Milky Way galaxy. Assuming a circular orbit\({\rm{30,000 ly}}\)in radius and an orbital speed of\({\rm{250 km/s}}\),how many years does it take for one revolution? Note that this is approximate, assuming constant speed and circular orbit, but it is representative of the time for our system and local stars to make one revolution around the galaxy.

Quantum gravity, if developed, would be an improvement on both general relativity and quantum mechanics, but more mathematically difficult. Under what circumstances would it be necessary to use quantum gravity? Similarly, under what circumstances could general relativity be used? When could special relativity, quantum mechanics, or classical physics be used?

(a) A particle and its antiparticle are at rest relative to an observer and annihilate (completely destroying both masses), creating two\({\rm{\gamma }}\)rays of equal energy. What is the characteristic\({\rm{\gamma }}\)-ray energy you would look for if searching for evidence of proton-antiproton annihilation? (The fact that such radiation is rarely observed is evidence that there is very little antimatter in the universe.) (b) How does this compare with the\({\rm{0}}{\rm{.511 MeV}}\)energy associated with electron-positron annihilation?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free