Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The core of a star collapses during a supernova, forming a neutron star. Angular momentum of the core is conserved, and so the neutron star spins rapidly. If the initial core radius is\({\rm{5 \times 1}}{{\rm{0}}^{\rm{5}}}{\rm{ km}}\)and it collapses to\({\rm{10}}{\rm{.0 km}}\), find the neutron star’s angular velocity in revolutions per second, given the core’s angular velocity was originally\({\rm{1}}\)revolution per\({\rm{30}}\)days.

Short Answer

Expert verified

The neutron star’s angular velocity in revolutions per second is obtained as: \({\rm{965 }}\frac{{{\rm{rev}}}}{{\rm{s}}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Angular momentum

The expression for the angular momentum is given by,

\(L = I\omega \)

Here\(L\)is the angular momentum,\(I\)is moment of inertia,\(\omega \)is the angular velocity.

The angular momentum can be conserved only when there is no external torque acting on the body.

02

Evaluating the neutron star’s angular velocity

Using the conservation of angular momentum, we then obtain:

\(\begin{array}{c}{{\rm{I}}_{\rm{1}}}{{\rm{\omega }}_{\rm{1}}}{\rm{ = }}{{\rm{I}}_{\rm{2}}}{{\rm{\omega }}_{\rm{2}}}\\{{\rm{\omega }}_{\rm{2}}}{\rm{ = }}\frac{{{{\rm{I}}_{\rm{1}}}}}{{{{\rm{I}}_{\rm{2}}}}}{{\rm{\omega }}_{\rm{1}}}\end{array}\)

As the moment of inertia is directly proportional to the square of the distance,

\(\begin{array}{c}{\omega _2}{\rm{ = }}{\left( {\frac{{{r_1}}}{{{r_2}}}} \right)^2}{\omega _1}\\ = {\left( {\frac{{{\rm{5 \times 1}}{{\rm{0}}^{\rm{5}}}{\rm{\;km}}}}{{{\rm{10}}{\rm{.0\;km}}}}} \right)^{\rm{2}}}\frac{{{\rm{1rev}}}}{{{\rm{30\;d}}}}\\ = {\rm{8}}{\rm{.33 \times 1}}{{\rm{0}}^{\rm{7}}}\frac{{{\rm{1rev}}}}{{{\rm{1\;d}}}}\\ = {\rm{8}}{\rm{.33 \times 1}}{{\rm{0}}^{\rm{7}}}\frac{{{\rm{1rev}}}}{{{\rm{24 \times 3600\;s}}}}\\ = {\rm{965}}\,{\rm{rev/s}}\end{array}\)

Therefore, the neutron star’s angular velocity is \({\rm{965}}\,{\rm{rev/s}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free