Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If you want a characteristic RL time constant of 1.00 s, and you have a resistor 500Ω, what value of self-inductance is needed?

Short Answer

Expert verified

The value of self-inductance is 500 H

Step by step solution

01

Given Data

The time constant of the RL circuit is τ=1.00s

The value of resistance isR=500Ω

02

Concept Introduction

The trait of a current-carrying coil that resists or opposes the change in current flowing through it is known as self-inductance. This is mostly owing to the self-induced emf generated by the coil.

03

Calculating the Value of Self-Inductance

In RL circuits, the time constant,τ, can be expressed as,

τ=LR…………….(1)

Rearrange equation (1) for the self-inductance and the substitute the given data, such that

L=τRL=(1.00s)×500Ω=500H

Therefore, the self-inductance is 500 H

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Derive an expression for the current in a system like that in figure below, under the following conditions. The resistance between the rails is R , the rails and the moving rod are identical in cross section A and have the same resistivity ρ. The distance between the rails is l, and the rod moves at constant speed v perpendicular to the uniform field B. At time zero, the moving rod is next to the resistance R.

The 5.00 A current through a 1.50 H inductor is dissipated by a \({\rm{2}}{\rm{.00 \Omega }}\) resistor in a circuit like that in Figure 23.44 with the switch in position 2 . (a) What is the initial energy in the inductor? (b) How long will it take the current to decline to 5.00% of its initial value? (c) Calculate the average power dissipated, and compare it with the initial power dissipated by the resistor.

A large power plant generates electricity at 12.0 kV. Its old transformer once converted the voltage to 335 kV. The secondary of this transformer is being replaced so that its output can be 750 kV for more efficient cross-country transmission on upgraded transmission lines.

(a) What is the ratio of turns in the new secondary compared with the old secondary?

(b) What is the ratio of new current output to old output (at 335 kV) for the same power? (c) If the upgraded transmission lines have the same resistance, what is the ratio of new line power loss to old?

Show that if a coil rotates at an angular velocity \({\rm{\omega }}\)the period of its AC output is2πω

Consider the use of an inductor in series with a computer operating on 60 Hzelectricity. Construct a problem in which you calculate the relative reduction in voltage of incoming high-frequency noise compared to 60 Hzvoltage. Among the things to consider are the acceptable series reactance of the inductor for 60 Hzpower and the likely frequencies of noise coming through the power lines.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free