Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use Faraday’s law, Lenz’s law, and RHR-1to show that the magnetic force on the current in the moving rod in Figure 23.11is in the opposite direction of its velocity.

Short Answer

Expert verified

We found that if the direction of the current is upward, then the force will be towards the left, opposite the velocity.

Step by step solution

01

Define Electromagnetic Induction

An electromotive force is produced in the closed conductor that is placed in a continuously changing magnetic field. The induced emf is such that it opposed the cause due to which the magnetic field is changing. This is known as Electromagnetic induction.

02

Explanation

This question must view the drawing given in the book.

As the moving rod increases the surface enclosed by the circuit, the flux will increase. It means that, according to Lenz's law, the current that will flow will be in the direction to oppose this change in flux. So the induced current will be such that its induced magnetic field will counter the change in flux. It means that it will be out of the plane. This allows us to evaluate, using RHR-2, the direction of the current, which is clockwise. Knowing this, we can apply RHR-1. As the direction of the current is upward and the magnetic field into the plane, then the direction of the force will be opposite to the direction of the velocity.

Therefore, if the direction of the current is upward, then the force will be, opposite to the velocity.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A \({\rm{25}}{\rm{.0 H}}\) inductor has \({\rm{100 A}}\) of current turned off in \({\rm{1}}{\rm{.00 ms}}{\rm{.}}\) (a) What voltage is induced to oppose this? (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?

Verify that after a time of \(10.0{\rm{ }}ms\), the current for the situation considered in Example \(23.9\) will be \(0.183{\rm{ }}A\) as stated.

A short circuit to the grounded metal case of an appliance occurs as shown in Figure \({\rm{23}}{\rm{.60}}\). The person touching the case is wet and only has a \({\rm{3}}{\rm{.00 k\Omega }}\) resistance to earth/ground.

(a) What is the voltage on the case if \({\rm{5}}{\rm{.00 mA}}\) flows through the person?

(b) What is the current in the short circuit if the resistance of the earth/ground wire is \({\rm{0}}{\rm{.200 \Omega }}\)?

(c) Will this trigger the \({\rm{20}}{\rm{.0 A}}\) circuit breaker supplying the appliance?

Distances in space are often quoted in units of light years, the distance light travels in one year. (a) How many meters is a light year? (b) How many meters is it to Andromeda, the nearest large galaxy, given that it is2.0×106 light years away? (c) The most distant galaxy yet discovered is12.0×109 light years away. How far is this in meters?

A coil is moved through a magnetic field as shown in Figure 23.59. The field is uniform inside the rectangle and zero outside. What is the direction of the induced current and what is the direction of the magnetic force on the coil at each position shown.

A coil is moved into and out of a region of uniform magnetic field

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free