Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Referring to Example 23.14, find the average power at \({\rm{10}}{\rm{.0}}\;{\rm{kHz}}\).

Short Answer

Expert verified

The average power at\({\rm{10}}{\rm{.0}}\;{\rm{kHz}}\)is\({\rm{16}}{\rm{.0\;W}}\).

Step by step solution

01

Definition of capacitor

A capacitor is a two-terminal electrical component that may store energy in the form of an electric charge. It is made up of two electrical wires separated by a certain distance. The space between the conductors can be filled with the vacuum or a dielectric, which is an insulating substance.

02

Find the value of power

We have a circuit with a resistor of\({\rm{40}}\;\Omega \), an inductor of\({\rm{3}}\;{\rm{mH}}\), and a capacitor of\({\rm{5}}\;{\rm{\mu F}}\)that is fed at \({\rm{120\;V,10}}\;{\rm{kHz}}\).

The authority will be granted by

\(\begin{aligned} {\rm{P}} &= {\rm{UIcos}}\phi \\ &= \left( {\frac{{{{\rm{U}}^{\rm{2}}}}}{{\rm{Z}}}} \right){\rm{cos}}\phi \end{aligned}\)

That is, we must determine the impedance and the power factor.

The capacitive and inductive components are found as follows to determine the impedance:

\(\begin{aligned} {{\rm{X}}_{\rm{C}}} &= \frac{{\rm{1}}}{{{\rm{2\pi fC}}}}\\ &= \frac{{\rm{1}}}{{{\rm{2\pi }} \times {\rm{10}}\;{\rm{kHz}}\left( {\frac{{{{10}^3}\;Hz}}{{{\rm{1}}\;{\rm{kHz}}}}} \right) \times {\rm{5}}\;\mu {\rm{F}}\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}\;F}}{{1\;\mu {\rm{F}}}}} \right)}}\\ &= {\rm{3}}{\rm{.183}}\;\Omega \\{{\rm{X}}_{\rm{L}}} &= {\rm{2\pi fL}}\\ &= {\rm{2\pi }} \times {\rm{10}}\;{\rm{kHz}}\left( {\frac{{{{10}^3}\;Hz}}{{{\rm{1}}\;{\rm{kHz}}}}} \right) \times {\rm{3}}\;{\rm{mH}}\left( {\frac{{{{10}^{ - 3}}\;H}}{{{\rm{1}}\;{\rm{mH}}}}} \right)\\ &= {\rm{188}}{\rm{.5}}\;\Omega \end{aligned}\)

As a result, the impedance will be

\(\begin{aligned} {\rm{Z}} &= \sqrt {{{\rm{R}}^{\rm{2}}} + {{\left( {{{\rm{X}}_{\rm{L}}} - {{\rm{X}}_{\rm{C}}}} \right)}^{\rm{2}}}} \\ &= \sqrt {{{\left( {{\rm{40}}\;\Omega } \right)}^{\rm{2}}} - {{\left( {{\rm{188}}{\rm{.5}}\;\Omega - {\rm{3}}{\rm{.183}}\;\Omega } \right)}^{\rm{2}}}} \\ &= 189.6\;\Omega \end{aligned}\)

As a result, the power factor will be

\(\begin{aligned} {\rm{cos}}\phi &= \frac{{\rm{R}}}{{\rm{Z}}}\\ &= \frac{{{\rm{40}}\;\Omega }}{{{\rm{189}}{\rm{.6}}\;\Omega }}\\ &= 0.21\end{aligned}\)

Thus, the power is.

\(\begin{aligned} {\rm{P}} &= \frac{{{{\left( {{\rm{120}}\;{\rm{V}}} \right)}^{\rm{2}}}}}{{{\rm{189}}{\rm{.6}}\;\Omega }} \times 0.21\\ &= {\rm{16\;W}}\end{aligned}\)

Therefore, the average power at\({\rm{10}}{\rm{.0}}\;{\rm{kHz}}\)is\({\rm{16}}{\rm{.0\;W}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free