Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is the cost of heating a hot tub containing \({\rm{1500 kg}}\) of water from to assuming \({\rm{75}}{\rm{.0\% }}\) efficiency to account for heat transfer to the surroundings? The cost of electricity is \({\rm{12 }}{{{\rm{cents}}} \mathord{\left/ {\vphantom {{{\rm{cents}}} {{\rm{kW}} \cdot {\rm{h}}}}} \right.\\} {{\rm{kW}} \cdot {\rm{h}}}}\).(b) What current was used by the \({\rm{220 - V AC}}\) electric heater, if this took \({\rm{4}}{\rm{.00 h}}\)?

Short Answer

Expert verified
  1. Cost of the energy supplied to heater is\({\rm{\$ 6}}{\rm{.28}}\).
  2. Amount of current used by heater is \({\rm{79}}{\rm{.3\;A}}\).

Step by step solution

01

Definition of power, specific heat of a substance and relation between potential difference & power.

Power: The power of a process is the amount of some type of energy converted into a different type divided by the time interval\({\rm{\Delta t}}\)in which the process occurred:

\({\rm{P = }}\frac{{{\rm{\Delta E}}}}{{{\rm{\Delta t}}}}\) ….. (1)

The SI unit of power is the watt (W).

The energy Q required to change the temperature of a mass m of a substance by an amount\({\rm{\Delta T}}\)is

\({\rm{Q = mc\Delta T}}\) ….. (2)

Here, c is the specific heat of the substance.

If a potential difference\({\rm{\Delta V}}\)is maintained across a circuit element, the power, or rate at which energy is supplied to the element, is

\({\rm{P = I\Delta V}}\) ….. (3)

02

Given data and required data:

The mass of water,\({\rm{m}} = {\rm{1500\;kg}}\).

The temperature difference of the water is:

\(\begin{aligned}{}\Delta T &= 40.0^\circ C - 10.0^\circ C\\ &= 30.0^\circ C\end{aligned}\)

The efficiency of the energy conversion is\({\rm{\eta }} = {\rm{75}}{\rm{.0\% }}\).

The cost of electricity is\({\rm{9 }}{{{\rm{cents}}} \mathord{\left/ {\vphantom {{{\rm{cents}}} {{\rm{kW}} \cdot {\rm{h}}}}} \right.\\} {{\rm{kW}} \cdot {\rm{h}}}}\).

The voltage across the electric heater,\({\rm{\Delta V}} = {\rm{220\;V}}\).

The time interval of the heating process is:

\(\begin{aligned}{}{\rm{\Delta t}} &= \left( {{\rm{4}}{\rm{.00\;h}}} \right)\left( {\frac{{{\rm{60\;min}}}}{{{\rm{1\;h}}}}} \right)\left( {\frac{{{\rm{60\;s}}}}{{{\rm{1\;min}}}}} \right)\\ &= {\rm{14400\;s}}\end{aligned}\)

The specific heat of water, \({\rm{c}} = {\rm{4186\;}}{{\rm{J}} \mathord{\left/ {\vphantom {{\rm{J}} {{\rm{kg}} \cdot ^\circ {\rm{C}}}}} \right.\\} {{\rm{kg}} \cdot ^\circ {\rm{C}}}}\)

03

(a) Calculation of electrical energy supplied by heater and its cost:

The electrical energy\({{\rm{E}}_{{\rm{electrical }}}}\)supplied by the electric heater goes into increasing the temperature the water a temperature difference\({\rm{\Delta T}}\).

But we are given that the efficiency of this energy conversion is\({\rm{75}}{\rm{.0\% }}\).So

\(\left( {{\rm{0}}{\rm{.95}}} \right){{\rm{E}}_{{\rm{clectrical }}}} = {{\rm{Q}}_{{\rm{water}}}}\)

Here,\({{\rm{Q}}_{{\rm{water }}}}\)is the energy required to raise the temperature of the water found from Equation (2):

\(\left( {{\rm{0}}{\rm{.95}}} \right){{\rm{E}}_{{\rm{electrical }}}} = {\rm{mc\Delta T}}\)

Solve the above equation for\({{\rm{E}}_{{\rm{electrical }}}}\)as below.

\({{\rm{E}}_{{\rm{electrical }}}} = \frac{{{\rm{mc\Delta T}}}}{{{\rm{0}}{\rm{.95}}}}\)

Entering the values for m, c, and\({\rm{\Delta T}}\)in the above equation, it gives:

\(\begin{aligned}{}{{\rm{E}}_{{\rm{electrical }}}} &= \frac{{\left( {{\rm{1500\;kg}}} \right)\left( {{\rm{4186\;}}{{\rm{J}} \mathord{\left/ {\vphantom {{\rm{J}} {{\rm{kg}} \cdot ^\circ {\rm{C}}}}} \right.\\} {{\rm{kg}} \cdot ^\circ {\rm{C}}}}} \right)\left( {{\rm{30}}{\rm{.0}}^\circ {\rm{C}}} \right)}}{{{\rm{0}}{\rm{.95}}}}\\ &= {\rm{251}}{\rm{.16 \times 1}}{{\rm{0}}^{\rm{6}}}{\rm{\;J}}\end{aligned}\)

Convert this energy into the units of kilowatt-hours by multiplying by the following conversion factor:

\(\begin{aligned}{}{E_{electrical}} &= \left( {251.16 \times {{10}^6}\;J} \right)\left( {\frac{{1\;{\rm{ }}kW \times h}}{{3.60 \times {{10}^6}\;J}}} \right)\\ &= \frac{{2093}}{{30}}{\rm{ }}\;kW \cdot h\end{aligned}\)

The cost of this energy is found by multiplying by the cost of a\({{\rm{E}}_{{\rm{electrical }}}}\)single kilowatt-hour are given:

\(\begin{aligned}{}Cost{\rm{ }} &= \left( {\frac{{2093}}{{30}}\;kW \cdot h} \right)\left( {\frac{{9{\rm{ }}cents{\rm{ }}}}{{1\;kW \cdot h}}} \right)\\ &= 628{\rm{ }}cents\\ &= (628{\rm{ }}cents{\rm{ }})\left( {\frac{{\$ 1}}{{100{\rm{ }}cents{\rm{ }}}}} \right)\\ &= \$ 6.28\end{aligned}\)

Therefore, Cost of the energy supplied to heater is \({\rm{\$ 6}}{\rm{.28}}\).

04

(b) Calculation of amount of current used by heater:

The electrical energy\({{\rm{E}}_{{\rm{electrical }}}}\)is found in terms of the power output of the heater and the time interval of the heating process by Equation (2):

\({{\rm{E}}_{{\rm{electrical }}}} = {\rm{P\Delta t}}\)

Substitute for P from equation (3):

\({{\rm{E}}_{{\rm{electrical}}}} = {\rm{I\Delta V\Delta t}}\)

Solve the above equation for I as below.

\({\rm{I = }}\frac{{{{\rm{E}}_{{\rm{electrical }}}}}}{{{\rm{\Delta V\Delta t}}}}\)

Substitute numerical values:

\(\begin{aligned}{}{\rm{I}} &= \frac{{\left( {{\rm{251}}{\rm{.16 \times 1}}{{\rm{0}}^{\rm{6}}}{\rm{\;J}}} \right)}}{{\left( {{\rm{220\;V}}} \right)\left( {{\rm{14400\;s}}} \right)}}\\ &= {\rm{79}}{\rm{.3 A}}\end{aligned}\)

Hence, amount of current used by heater is \({\rm{79}}{\rm{.3\;A}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free