Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Integrated Concepts

(a) Assuming \({\rm{95}}{\rm{.0\% }}\)efficiency for the conversion of electrical power by the motor, what current must the \({\rm{12}}{\rm{.0 V}}\) batteries of a \({\rm{750 kg}}\) electric car be able to supply: (a) To accelerate from rest to \({\rm{25}}{\rm{.0\; }}{m \mathord{\left/ {\vphantom {m s}} \right. \ } s}\) in \({\rm{1}}{\rm{.00\;min}}\)? (b) To climb a \({\rm{2}}{\rm{.00 \times 1}}{{\rm{0}}^{\rm{2}}}{\rm{ m}}\) high hill in \({\rm{2}}{\rm{.00 min}}\) at a constant \({\rm{25}}{\rm{.0 }}{m \mathord{\left/ {\vphantom {m s}} \right. \ } s}\) speed while exerting \({\rm{5}}{\rm{.00 \times 1}}{{\rm{0}}^{\rm{2}}}{\rm{ N}}\) of force to overcome air resistance and friction? (c) To travel at a constant \({\rm{25}}{\rm{.0 }}{m \mathord{\left/ {\vphantom {m s}} \right. \ } s}\) speed, exerting a \({\rm{5}}{\rm{.00 \times 1}}{{\rm{0}}^{\rm{2}}}{\rm{\;N}}\)force to overcome air resistance and friction? See Figure \({\rm{20}}{\rm{.44}}\).

Short Answer

Expert verified
  1. The amount of current is \({\rm{343\;A}}\).
  2. The amount of current is \({\rm{2}}{\rm{.17\;kA}}\).
  3. The amount of current is \({\rm{1}}{\rm{.10kA}}\).

Step by step solution

01

Definition of Power:

The power of a process is the amount of some type of energy converted into a different type divided by the time interval\({\rm{\Delta t}}\)in which the process occurred:

\({\rm{P}} = \frac{{{\rm{\Delta E}}}}{{{\rm{\Delta t}}}}\) ….. (1)

The SI unit of power is the watt.

As you know, one watt is equal to one joule per second. Therefore,

\(1{\rm{ }}W = 1{\rm{ }}{J \mathord{\left/ {\vphantom {J s}} \right. \ } s}\)

The power of any electric circuit is defined by the formula

\({\rm{P}} = {\rm{I\Delta V}}\) ….. (2)

Here,\({\rm{I}}\)is the current and\({\rm{I\Delta V}}\)is the potential difference.

02

Definition of Kinetic Energy

The kinetic energy of any particle,

\({\rm{K}}{\rm{.E}} = \frac{{\rm{1}}}{{\rm{2}}}{\rm{m}}{{\rm{v}}^{\rm{2}}}\) ….. (3)

Where\({\rm{m}}\)is the mass and\({\rm{v}}\)is the velocity of the particle.

03

Definition of Gravitational potential energy

The gravitational potential energy is given by

\({{\rm{U}}_{\rm{g}}} = {\rm{mgh}}\) ….. (4)

Here,\({\rm{m}}\)is the mass of the particle,\({\rm{g}}\)is the acceleration due to gravity and\({\rm{h}}\)is the height of the particle.

04

Definition of Work done:

The work done is given by

\({\rm{W}} = {\rm{Fdcos\theta }}\) ….. (5)

Here,\({\rm{F}}\)is the exerted force,\({\rm{d}}\)is the displacement,\({\rm{\theta }}\)is the angle between\({\rm{\vec F}}\)and\({\rm{\vec d}}\).

05

Definition of average speed:

The average speed is

\({\rm{v = }}\frac{{{\rm{\Delta x}}}}{{\rm{t}}}{\rm{ }}......{\rm{(6)}}\)

Where\({\rm{\Delta x}}\)is the change in displacement or position and\({\rm{t}}\)is the time.

06

The given data

- The efficiency for conversion of electrical power by the motor is:\({\rm{\eta = 95}}{\rm{.0\% }}\).

- The potential difference across the batteries:\({\rm{\Delta V = 12}}{\rm{.0\;V}}\).

- The mass of the electric car is:\({\rm{m = 750\;kg}}\).

07

(a) To accelerate the calculation of current

The initial speed of the car is:\({{\rm{v}}_{\rm{i}}}{\rm{ = 0}}\).

The final speed of the car is: \({{\rm{v}}_{\rm{f}}}{\rm{ = 25}}{\rm{.0\;m/s}}\).

The time interval of the acceleration is:

\(\begin{align}{\rm{\Delta t}} &= \left( {{\rm{1}}{\rm{.00\;min}}} \right)\left( {\frac{{{\rm{60\;s}}}}{{{\rm{1\;min}}}}} \right)\\ &= {\rm{60}}{\rm{.0\;s}}\end{align}\)

Given that the efficiency of the conversion is\({\rm{95}}{\rm{.0\% }}\), so:

\(\left( {{\rm{0}}{\rm{.95}}} \right){{\rm{E}}_{{\rm{electrical }}}} = {\rm{\Delta K}}\)

Substitute \({\rm{P\Delta t}}\) for \({{\rm{E}}_{{\rm{electrical }}}}\) from Equation (1) and the change in kinetic energy of the car is from Equation (3):

\(\left( {{\rm{0}}{\rm{.95}}} \right){\rm{P\Delta t}} = \frac{{\rm{1}}}{{\rm{2}}}{\rm{m}}{{\rm{v}}_{\rm{f}}}^2 - \frac{{\rm{1}}}{{\rm{2}}}{\rm{m}}{{\rm{v}}_{\rm{i}}}^2\)

Substitute \({\rm{I\Delta V}}\) for \({\rm{P}}\) in the above equation.

\(\left( {0.95} \right)\left( {{\rm{I\Delta V}}} \right){\rm{\Delta t}} = \frac{{\rm{1}}}{{\rm{2}}}{\rm{m}}{{\rm{v}}_{\rm{f}}}^2 - \frac{{\rm{1}}}{{\rm{2}}}{\rm{m}}{{\rm{v}}_{\rm{i}}}^2\)

Rearrange the above equation for current as below.

\({\rm{I}} = \frac{{{\rm{mv}}_{\rm{f}}^{\rm{2}}}}{{{\rm{2}}\left( {{\rm{0}}{\rm{.95}}} \right){\rm{\Delta V\Delta t}}}}\)

Solve the above equation by substituting known numerical values in the above equation.

\(\begin{align}{\rm{I}} &= \frac{{\left( {{\rm{750\;kg}}} \right){{\left( {{\rm{25}}{\rm{.0 }}{m \mathord{\left/ {\vphantom {m s}} \right. \ } s}} \right)}^{\rm{2}}}}}{{{\rm{2}}\left( {{\rm{0}}{\rm{.95}}} \right)\left( {{\rm{12}}{\rm{.0\;V}}} \right)\left( {{\rm{60}}{\rm{.0\;s}}} \right)}}\\ &= {\rm{343\;A}}\end{align}\)

Therefore, in this case the amount of current is \({\rm{343\;A}}\).

08

(b) To climb the calculation of current

The change in height of the car is: \({\rm{\Delta y}} = {\rm{2}}{\rm{.00 \times 1}}{{\rm{0}}^{\rm{2}}}{\rm{\;m}}\).

The time interval of climbing is:

\(\begin{align}{\rm{\Delta t}} &= \left( {{\rm{2}}{\rm{.00\;min}}} \right)\left( {\frac{{{\rm{60\;s}}}}{{{\rm{1\;min}}}}} \right)\\ &= {\rm{120\;s}}\end{align}\)

The speed of the car, \({\rm{v}} = {\rm{25}}{\rm{.0 }}{m \mathord{\left/ {\vphantom {m s}} \right. \ } s}\).

The force exerted by the car to overcome air resistance and friction,\({\rm{F}} = {\rm{5}}{\rm{.00 \times 1}}{{\rm{0}}^{\rm{2}}}{\rm{\;N}}\)

The electrical energy \({{\rm{E}}_{{\rm{electrical}}}}\)supplied by the battery in this case goes into increasing only the gravitational potential energy \({{\rm{U}}_{\rm{g}}}\) of the car and exerting a positive work \({\rm{W}}\) to overcome air resistance and friction.

The kinetic energy of the car is constant because the car is moving with constant speed. Given efficiency of the conversion is \({\rm{95}}{\rm{.0\% }}\).So:

\(\left( {{\rm{0}}{\rm{.95}}} \right){{\rm{E}}_{{\rm{electrical }}}} = {\rm{\Delta }}{{\rm{U}}_{\rm{g}}}{\rm{ + W}}\)

Substitute \({\rm{I\Delta V\Delta t}}\) for \({{\rm{E}}_{{\rm{electical}}}}\) and \({\rm{mg\Delta y}}\) for \({\rm{\Delta }}{{\rm{U}}_{\rm{g}}}\), and \({\rm{Fd}}\) for \({\rm{W}}\) in the above equation.

\(\left( {{\rm{0}}{\rm{.95}}} \right){\rm{I\Delta V\Delta t}} = {\rm{mg\Delta y}} + {\rm{Fd}}\)

Here, \({\rm{F}}\) is the force exerted by the car and \({\rm{d}}\) is the distance moved by the car.

\(\left( {0.95} \right)I\Delta V\Delta t = mg\Delta y + Fv\Delta t\)

Rearrange the above equation for current \({\rm{I}}\) as below.

\(I = \frac{{mg\Delta y + Fv\Delta t}}{{(0.95)\Delta V\Delta t}}\)

Substitute numerical values:

\(\begin{align}I &= \frac{{\left( {750\;{\rm{ kg}}\left( {9.80{\rm{ }}{m \mathord{\left/ {\vphantom {m {{s^2}}}} \right. \ } {{s^2}}}} \right)\left( {2.00 \times {{10}^2}\;{\rm{ }}m} \right) + \left( {5.00 \times {{10}^2}{\rm{ }}\;N} \right)(25.0\;{\rm{ }}{m \mathord{\left/ {\vphantom {m s}} \right. \ } s})(120{\rm{ }}s)} \right.}}{{0.95 \times 12.0{\rm{ }}V \times 120{\rm{ }}s}}\\ &= 2.17 \times {10^3}{\rm{ }}A\\ &= \left( {2.17 \times {{10}^3}{\rm{ }}A} \right)\left( {\frac{{1{\rm{ }}kA}}{{1000{\rm{ }}A}}} \right)\\ &= 2.17{\rm{ }}kA\end{align}\)

Therefore, in this case the amount of current is \(2.17{\rm{ }}kA\).

09

(c) To travel the calculation of current:

The speed of the car is \({\rm{v}} = {\rm{25}}{\rm{.0 }}{m \mathord{\left/ {\vphantom {m s}} \right. \ } s}\).

The force exerted by the car to overcome air resistance and friction is,\({\rm{F}} = {\rm{5}}{\rm{.00 \times 1}}{{\rm{0}}^{\rm{2}}}{\rm{\;N}}\).

Overcome air resistance and friction. Given that efficiency of the conversion is\({\rm{95}}{\rm{.0\% }}\).

Therefore,

\(\left( {0.95} \right){E_{electrical{\rm{ }}}} = W\)

Here, \({\rm{W}}\) is found from Equation (5):

\(\left( {0.95} \right)I\Delta V\Delta t = Fd\)

Here, \({\rm{F}}\) is the force exerted by the car and \({\rm{d}}\) is the distance moved by the car found from Equation (6):

\(\begin{align}{l}\left( {0.95} \right)I\Delta V\Delta t = Fv\Delta t\\\left( {0.95} \right)I\Delta V = Fv\end{align}\)

Solve the above equation for current \({\rm{I}}\) as below.

\(I = \frac{{Fv}}{{\left( {0.95} \right)\Delta V}}\)

Substitute known numerical values in the above expression.

\(\begin{align}I &= \frac{{\left( {5.00 \times {{10}^2}\;{\rm{ }}N} \right)(25.0{\rm{ }}{m \mathord{\left/ {\vphantom {m s}} \right. \ } s})}}{{0.95 \times 12.0{\rm{ }}V}}\\ &= 1.10 \times {10^3}\;A\\ &= \left( {1.10 \times {{10}^3}\;A} \right)\left( {\frac{{1{\rm{ }}kA}}{{1000\;A}}} \right)\\ &= 1.10{\rm{ }}kA\end{align}\)

Therefore, in this case the amount of current is \(1.10{\rm{ }}kA\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free