(a)
The electrostatic force between two electrons is,
\({F_e} = \frac{{K{q^2}}}{{{r^2}}}\)
Here, K is the electrostatic force constant \(\left( {K = 9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\), q is the charges on the electrons \(\left( {q = 1.6 \times {{10}^{ - 19}}{\rm{ }}C} \right)\), and r is the separation between the electrons.
The gravitational force between two electrons is,
\({F_g} = \frac{{Gm_e^2}}{{{r^2}}}\)
Here, G is the universal gravitational constant \(\left( {G = 6.67 \times {{10}^{ - 11}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/k}}{{\rm{g}}^{\rm{2}}}} \right)\), \({m_e}\) is the mass on an electron \(\left( {{m_e} = 9.1 \times {{10}^{ - 31}}{\rm{ kg}}} \right)\), and r is the distance of separation between the electrons.
The ratio of the electrostatic force to gravitational force between two electrons is,
\(\begin{aligned} {\left( {\frac{{{F_e}}}{{{F_g}}}} \right)_e} &= \frac{{\frac{{K{q^2}}}{{{r^2}}}}}{{\frac{{Gm_e^2}}{{{r^2}}}}}\\ &= \frac{{K{q^2}}}{{Gm_e^2}}\end{aligned}\)
Substituting all known values,
\(\begin{aligned} {\left( {\frac{{{F_e}}}{{{F_g}}}} \right)_e} &= \frac{{\left( {9 \times {{10}^9}{\rm{ }}N \cdot {m^2}/{C^2}} \right) \times {{\left( {1.6 \times {{10}^{ - 19}}{\rm{ }}C} \right)}^2}}}{{\left( {6.67 \times {{10}^{ - 11}}{\rm{ }}N \cdot {m^2}/k{g^2}} \right) \times {{\left( {9.1 \times {{10}^{ - 31}}{\rm{ }}kg} \right)}^2}}}\\ &= 4.17 \times {10^{42}}\end{aligned}\)
Hence, the ratio of the electrostatic to the gravitational force between two electrons is \(4.17 \times {10^{42}}\).