Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the electric field lines in the figure above were perpendicular to the object, would it necessarily be a conductor? Explain.

Short Answer

Expert verified

When electric field lines are perpendicular to the object, the object must be a conductor.

Step by step solution

01

Gauss law

Gauss stated that the electric flux φ through a hypothetical Gaussian surface equals to1ε times of the total charge enclosed inside the hypothetical Gaussian surface.Mathematically,

φ=qencε..........(1.1)

Here,qenc is the charge enclosed inside the Gaussian surface, andε is the permittivity of the free space.

02

Electric field on the surface of the conductor

When some charge is given to the conductor, the charge distributes itself on the surface of the conductor in order to reduce the repulsion between them. This mutual repulsion can only be minimized if there is no component of the field that is applying force on other charges. This is only possible if the field lines are perpendicular to the surface charge distribution.

Thus. The electric field for a conductor is perpendicular to its surface.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance between the centers of the balls. Construct a problem in which you calculate the electric field (magnitude and direction) due to the balls at various points along a line running through the centers of the balls and extending to infinity on either side. Choose interesting points and comment on the meaning of the field at those points. For example, at what points might the field be just that due to one ball and where does the field become negligibly small? Among the things to be considered are the magnitudes of the charges and the distance between the centers of the balls. Your instructor may wish for you to consider the electric field off axis or for a more complex array of charges, such as those in a water molecule.

A test charge of \({\rm{ + 2 \mu C}}\) is placed halfway between a charge of \({\rm{ + 6 \mu C}}\) and another of \({\rm{ + 4 \mu C}}\) separated by \(10{\rm{ cm}}\). (a) What is the magnitude of the force on the test charge? (b) What is the direction of this force (away from or toward the \({\rm{ + 6 \mu C}}\)charge)?

Consider identical spherical conducting space ships in deep space where gravitational fields from other bodies are negligible compared to the gravitational attraction between the ships. Construct a problem in which you place identical excess charges on the space ships to exactly counter their gravitational attraction. Calculate the amount of excess charge needed. Examine whether that charge depends on the distance between the centers of the ships, the masses of the ships, or any other factors. Discuss whether this would be an easy, difficult, or even impossible thing to do in practice.

A simple and common technique for accelerating electrons is shown in Figure 18.55, where there is a uniform electric field between two plates. Electrons are released, usually from a hot filament, near the negative plate, and there is a small hole in the positive plate that allows the electrons to continue moving. (a) Calculate the acceleration of the electron if the field strength is\(2.50 \times {10^4}{\rm{ N/C}}\). (b) Explain why the electron will not be pulled back to the positive plate once it moves through the hole.

Figure 18.55 Parallel conducting plates with opposite charges on them create a relatively uniform electric field used to accelerate electrons to the right. Those that go through the hole can be used to make a TV or computer screen glow or to produce X-rays.

What is the force on the charge located at \(x = 8.00{\rm{ }}cm\) in Figure 18.52(a) given that \(q = 1.00{\rm{ }}\mu C\)?

Figure 18.52 (a) Point charges located at \[{\bf{3}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{11}}.{\bf{0}}{\rm{ }}{\bf{cm}}\] along the x-axis. (b) Point charges located at \[{\bf{1}}.{\bf{00}},{\rm{ }}{\bf{5}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{14}}.{\bf{0}}{\rm{ }}{\bf{cm}}\] along the x-axis

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free