Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Using the symmetry of the arrangement, determine the direction of the electric field at the center of the square in Figure 18.53, given that\({q_a} = {q_b} = - {\rm{1}}{\rm{.00 }}\mu {\rm{C}}\)and\({q_c} = {q_d} = + {\rm{1}}{\rm{.00 mC}}\). (b) Calculate the magnitude of the electric field at the location of\(q\), given that the square is\(5.00{\rm{ cm}}\)on a side.

Short Answer

Expert verified

(a) The electric field at the center of the square will be straight up.

(b) The magnitude of the electric field at the center of the square is \({\rm{2}}{\rm{.03 \times 1}}{{\rm{0}}^{\rm{7}}}{\rm{ N/C}}\).

Step by step solution

01

Electric field

The space around the charge in which another charge experiences some electrostatic force is known as electric field. It is a vector quantity. The expression for the electric field is,

\(E = \frac{{Kq}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant, \(q\) is the charge and \(r\) is the distance of the point of consideration from the charge \(q\).

If a number of electric field acts a given point, the net electric field will be equal to the vector sum of individual field.

02

(a) Direction of the electric field

Due to symmetry the electric field at the center of the square will be straight up, since \({q_a}\) and \({q_b}\) are negative and \({q_c}\) and \({q_d}\) are positive with same magnitude. The resultant of the electric field due to \({q_a}\) and \({q_b}\) will be straight up, and the resultant of the electric field due to \({q_c}\) and \({q_d}\) will be straight up.

Hence, the direction of electric field at the center of the square is straight up.

03

(b) Magnitude of the electric field at the center of square

The electric field at the center of the square is represented as,

Electric field at the center of the square

Here, \({E_a}\) is the electric field at the center of the square due to charge \({q_a}\), \({E_b}\) is the electric field at the center of the square due to charge \({q_b}\), \({E_c}\) is the electric field at the center of the square due to charge \({q_c}\), and \({E_d}\) is the electric field at the center of the square due to charge \({q_d}\).

04

Distance of charges from the center of the square

The distance of test charge \(q\) from the charges \({q_a}\), \({q_b}\), \({q_c}\) and \({q_d}\) is,

\(r = \frac{a}{{\sqrt 2 }}\)

Here, \(a\) is the side of the square \(\left( {a = {\rm{5}}{\rm{.00 cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}r = \frac{{5.00{\rm{ cm}}}}{{\sqrt 2 }}\\ \approx 3.54{\rm{ cm}}\end{array}\)

05

Electric field at the center of the square

The magnitude of the electric field at the center of the square due to charge \({q_a}\),

\({E_a} = \frac{{K{q_a}}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant \(\left( {K = {\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\), \({q_a}\) is the magnitude of the charge \(\left( {{q_a} = {\rm{1}}{\rm{.00 }}\mu {\rm{C}}} \right)\), and \(r\) is the distance of charge \({q_a}\) from the center of the square \(\left( {r = 3.54{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{E_a} = \frac{{\left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{1}}{\rm{.00 }}\mu {\rm{C}}} \right)}}{{{{\left( {{\rm{3}}{\rm{.54 cm}}} \right)}^{\rm{2}}}}}\\ = \frac{{\left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left[ {\left( {{\rm{3}}{\rm{.54 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\ = {\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}\end{array}\)

The magnitude of the electric field at the center of the square due to charge \({q_b}\),

\({E_b} = \frac{{K{q_b}}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant \(\left( {K = {\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\), \({q_b}\) is the magnitude of the charge \(\left( {{q_b} = 1.00{\rm{ }}\mu {\rm{C}}} \right)\), and \(r\) is the distance of charge \({q_b}\) from the center of the square \(\left( {r = 3.54{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{E_b} = \frac{{\left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{1}}{\rm{.00 }}\mu {\rm{C}}} \right)}}{{{{\left( {{\rm{3}}{\rm{.54 cm}}} \right)}^{\rm{2}}}}}\\ = \frac{{\left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left[ {\left( {{\rm{3}}{\rm{.54 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\ = {\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}\end{array}\)

The magnitude of the electric field at the center of the square due to charge \({q_c}\),

\({E_c} = \frac{{K{q_c}}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant \(\left( {K = {\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\), \({q_c}\) is the magnitude of the charge \(\left( {{q_c} = 1.00{\rm{ }}\mu {\rm{C}}} \right)\), and \(r\) is the distance of charge \({q_c}\) from the center of the square \(\left( {r = 3.54{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{E_c} = \frac{{\left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{1}}{\rm{.00 }}\mu {\rm{C}}} \right)}}{{{{\left( {{\rm{3}}{\rm{.54 cm}}} \right)}^{\rm{2}}}}}\\ = \frac{{\left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left[ {\left( {{\rm{3}}{\rm{.54 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\ = {\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}\end{array}\)

The magnitude of the electric field at the center of the square due to charge \({q_d}\),

\({E_d} = \frac{{K{q_d}}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant \(\left( {K = {\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\), \({q_d}\) is the magnitude of the charge \(\left( {{q_d} = 1.00{\rm{ }}\mu {\rm{C}}} \right)\), and \(r\) is the distance of charge \({q_d}\) from the center of the square \(\left( {r = 3.54{\rm{ cm}}} \right)\).

Substituting all known values,

\(\begin{array}{c}{E_d} = \frac{{\left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{1}}{\rm{.00 }}\mu {\rm{C}}} \right)}}{{{{\left( {{\rm{3}}{\rm{.54 cm}}} \right)}^{\rm{2}}}}}\\ = \frac{{\left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right) \times \left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left[ {\left( {{\rm{3}}{\rm{.54 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right]}^{\rm{2}}}}}\\ = {\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}\end{array}\)

06

Calculating the magnitude of net field

The field in the horizontal direction is,

\(\begin{array}{c}{E_x} = - {E_a}\sin \left( {45^\circ } \right) + {E_b}\sin \left( {45^\circ } \right) + {E_c}\sin \left( {45^\circ } \right) - {E_d}\sin \left( {45^\circ } \right)\\ = \left( { - {E_a} + {E_b} + {E_c} - {E_d}} \right) \times \sin \left( {45^\circ } \right)\end{array}\)

Substituting all known values,

\(\begin{array}{c}{E_x} = \left[ \begin{array}{l} - \left( {{\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}} \right) + \left( {{\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}} \right)\\ + \left( {{\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}} \right) - \left( {{\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}} \right)\end{array} \right] \times {\rm{sin}}\left( {{\rm{45^\circ }}} \right)\\ = 0\end{array}\)

The field in the vertical direction is,

\(\begin{array}{c}{E_y} = {E_a}\cos \left( {45^\circ } \right) + {E_b}\cos \left( {45^\circ } \right) + {E_c}\cos \left( {45^\circ } \right) + {E_d}\cos \left( {45^\circ } \right)\\ = \left( {{E_a} + {E_b} + {E_c} + {E_d}} \right) \times \cos \left( {45^\circ } \right)\end{array}\)

Substituting all known values,

\(\begin{array}{c}{E_y} = \left[ \begin{array}{l}\left( {{\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}} \right) + \left( {{\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}} \right) + \\\left( {{\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N}}/{\rm{C}}} \right) + \left( {{\rm{7}}{\rm{.18}} \times {\rm{1}}{{\rm{0}}^{\rm{6}}}{\rm{ N/C}}} \right)\end{array} \right] \times {\rm{cos}}\left( {{\rm{45^\circ }}} \right)\\ = {\rm{2}}{\rm{.03}} \times {\rm{1}}{{\rm{0}}^{\rm{7}}}{\rm{ N}}/{\rm{C}}\end{array}\)

The magnitude of net electric field at the center of the square is,

\(E = \sqrt {E_x^2 + E_y^2} \)

Substituting all known values,

\(\begin{array}{c}E = \sqrt {{{\left( 0 \right)}^2} + {{\left( {2.03 \times {{10}^7}{\rm{ N}}/{\rm{C}}} \right)}^2}} \\ = 2.03 \times {10^7}{\rm{ N}}/{\rm{C}}\end{array}\)

Hence, the magnitude of electric field at the center of the square is \({\rm{2}}{\rm{.03}} \times {\rm{1}}{{\rm{0}}^{\rm{7}}}{\rm{ N}}/{\rm{C}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The discussion of the electric field between two parallel conducting plates, in this module states that edge effects are less important if the plates are close together. What does close mean? That is, is the actual plate separation crucial, or is the ratio of plate separation to plate area crucial?

Earth has a net charge that produces an electric field of approximately\(150{\rm{ N/C}}\)downward at its surface. (a) What is the magnitude and sign of the excess charge, noting the electric field of a conducting sphere is equivalent to a point charge at its center? (b) What acceleration will the field produce on a free electron near Earthโ€™s surface? (c) What mass object with a single extra electron will have its weight supported by this field?

Find the total Coulomb force on the charge \(q\) in Figure 18.53, given that \(q = {\rm{1}}{\rm{.00 }}\mu {\rm{C}}\), \({q_a} = {\rm{2}}{\rm{.00 }}\mu {\rm{C}}\), \({q_b} = - {\rm{3}}{\rm{.00 }}\mu {\rm{C}}\), \({q_c} = - {\rm{4}}{\rm{.00 }}\mu {\rm{C}}\) , and \({q_d} = + {\rm{1}}{\rm{.00 }}\mu {\rm{C}}\). The square is \({\rm{50}}{\rm{.0 cm}}\) on a side.

Consider identical spherical conducting space ships in deep space where gravitational fields from other bodies are negligible compared to the gravitational attraction between the ships. Construct a problem in which you place identical excess charges on the space ships to exactly counter their gravitational attraction. Calculate the amount of excess charge needed. Examine whether that charge depends on the distance between the centers of the ships, the masses of the ships, or any other factors. Discuss whether this would be an easy, difficult, or even impossible thing to do in practice.

If the electric field lines in the figure above were perpendicular to the object, would it necessarily be a conductor? Explain.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free