Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Find the electric field at\(x = 5.00{\rm{ cm}}\)in Figure 18.52 (a), given that\(q = 1.00{\rm{ }}\mu C\). (b) At what position between\(3.00\)and\(8.00{\rm{ cm}}\)is the total electric field the same as that for\( - 2q\)alone? (c) Can the electric field be zero anywhere between\(0.00\)and\(8.00{\rm{ cm}}\)? (d) At very large positive or negative values of\(x\), the electric field approaches zero in both (a) and (b). In which does it most rapidly approach zero and why? (e) At what position to the right of\(11.0{\rm{ cm}}\)is the total electric field zero, other than at infinity? (Hint: A graphing calculator can yield considerable insight in this problem.)

Figure 18.52 (a) Point charges located at\[{\bf{3}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{11}}.{\bf{0}}{\rm{ }}{\bf{cm}}\]along the x-axis. (b) Point charges located at\[{\bf{1}}.{\bf{00}},{\rm{ }}{\bf{5}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{14}}.{\bf{0}}{\rm{ }}{\bf{cm}}\]along the x-axis

Short Answer

Expert verified

(a) The electric field at \(x = 5.00{\rm{ cm}}\) is \(4.0 \times {10^7}{\rm{ N}}/{\rm{C}}\). (b) The electric field at \(x = 7.00{\rm{ cm}}\) will be same for the \( - 2q\) alone. (c) No, the electric field cannot be zero anywhere between \(0.00\) and \(8.00{\rm{ cm}}\). (d) In Figure 18.52 (a) the electric field rapidly approach zero. (e) The total electric field is zero at \(30.607{\rm{ cm}}\).

Step by step solution

01

Electric field

The region around a charge in which the effect of the charge can be observed is known as electric field.The expression for the electric field is,

\(E = \frac{{Kq}}{{{r^2}}}\)

Here, \(K\) is the electrostatic force constant, \(q\) is the charge and \(r\) is the distance of the point of observation from the charge.

02

(a) Electric field at x=5.00 cm

The electric field for Figure 18.52 at \(x = {\rm{5}}{\rm{.00 cm}}\) is represented as,

Electric field at\(x = 5.00{\rm{ cm}}\)

The electric field at\(x = 5.00{\rm{ cm}}\)is,

\(\begin{array}{c}E = {E_3} + {E_8} - {E_{11}}\\ = \frac{{K\left( q \right)}}{{{{\left| {{r_5} - {r_3}} \right|}^2}}} + \frac{{K\left( {2q} \right)}}{{{{\left| {{r_5} - {r_8}} \right|}^2}}} - \frac{{K\left( q \right)}}{{{{\left| {{r_5} - {r_{11}}} \right|}^2}}}\\ = K\left[ {\frac{{\left( q \right)}}{{{{\left| {{r_5} - {r_3}} \right|}^2}}} + \frac{{\left( {2q} \right)}}{{{{\left| {{r_5} - {r_8}} \right|}^2}}} - \frac{{\left( q \right)}}{{{{\left| {{r_5} - {r_{11}}} \right|}^2}}}} \right]\end{array}\)

Here, \(K\) is the electrostatic force constant, \(q\) is the charge, \(\left| {{r_5} - {r_3}} \right|\) is the distance between \(x = 5.00{\rm{ cm}}\) and the charge at \[x = 3.00{\rm{ cm}}\], \(\left| {{r_5} - {r_8}} \right|\) is the distance between \(x = 5.00{\rm{ cm}}\) and the charge at \(x = 8.00{\rm{ cm}}\), and \(\left| {{r_5} - {r_{11}}} \right|\) is the distance between \(x = 5.00{\rm{ cm}}\) and the charge at \(x = 11.00{\rm{ cm}}\).

Substitute \({\rm{9 \times 1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}\) for \(K\), \(1.00{\rm{ }}\mu {\rm{C}}\) for \(q\)a, \(3.00{\rm{ cm}}\) for \({r_3}\), \(5.00{\rm{ cm}}\) for \({r_5}\), \(8.00{\rm{ cm}}\) for \({r_8}\), and \(11.00{\rm{ cm}}\) for \({r_{11}}\).

\(\begin{array}{c}E = \left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}} \right) \times \left[ \begin{array}{l}\frac{{\left( {{\rm{1}}{\rm{.00 \mu C}}} \right)}}{{{{\left| {\left( {{\rm{5}}{\rm{.00 cm}}} \right) - \left( {{\rm{3}}{\rm{.00 cm}}} \right)} \right|}^{\rm{2}}}}} + \frac{{{\rm{2 \times }}\left( {{\rm{1}}{\rm{.00 \mu C}}} \right)}}{{{{\left| {\left( {{\rm{5}}{\rm{.00 cm}}} \right) - \left( {{\rm{8}}{\rm{.00 cm}}} \right)} \right|}^{\rm{2}}}}}\\ - \frac{{\left( {{\rm{1}}{\rm{.00 \mu C}}} \right)}}{{{{\left| {\left( {{\rm{5}}{\rm{.00 cm}}} \right) - \left( {{\rm{11}}{\rm{.00 cm}}} \right)} \right|}^{\rm{2}}}}}\end{array} \right]\\ = \left( {{\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}} \right) \times \left[ \begin{array}{l}\frac{{\left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left| {\left( {{\rm{2}}{\rm{.00 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right|}^{\rm{2}}}}} + \frac{{{\rm{2}} \times \left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left| {\left( {{\rm{3}}{\rm{.00 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right|}^{\rm{2}}}}}\\ - \frac{{\left( {{\rm{1}}{\rm{.00 \mu C}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ C}}}}{{{\rm{1 \mu C}}}}} \right)}}{{{{\left| {\left( {{\rm{6}}{\rm{.00 cm}}} \right) \times \left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ m}}}}{{{\rm{1 cm}}}}} \right)} \right|}^{\rm{2}}}}}\end{array} \right]\\ = {\rm{4}}{\rm{.00 \times 1}}{{\rm{0}}^{\rm{7}}}{\rm{ N}}/{\rm{C}}\end{array}\)

Hence, the electric field at \(x = 5.00{\rm{ cm}}\) is \(4.0 \times {10^7}{\rm{ N}}/{\rm{C}}\).

03

(b) Point where the total electric field is same as that for -2q alone

Let \(x\) be the point between \(3.00\) and \(8.00{\rm{ cm}}\) where the total electric field be the same for \( - 2q\) alone i.e, \(E = {E_8}\).

The electric field at \(x\) is represented as,

Electric field at \(x\)

The electric field at \(x\) is,

\[\begin{array}{c}E = {E_3} + {E_8} - {E_{11}}\\{E_8} = \frac{{K\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} + \frac{{K\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} - \frac{{K\left( q \right)}}{{{{\left( {{r_{11}} - x} \right)}^2}}}\\\frac{{K\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} = K\left[ {\frac{{\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} + \frac{{\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} - \frac{{\left( q \right)}}{{{{\left( {{r_{11}} - x} \right)}^2}}}} \right]\\\frac{{K\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} = \frac{{\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} + \frac{{\left( {2q} \right)}}{{{{\left( {{r_8} - x} \right)}^2}}} - \frac{{\left( q \right)}}{{{{\left( {{r_{11}} - x} \right)}^2}}}\end{array}\]

Here, \(K\) is the electrostatic force constant, \(q\) is the charge, \(\left( {x - {r_3}} \right)\) is the distance between \(x\) and the charge at \(x = {\rm{3}}{\rm{.00 cm}}\), \(\left( {{r_8} - x} \right)\) is the distance between \(x\) and the charge at \(x = 8.00{\rm{ cm}}\), and \(\left( {{r_{11}} - x} \right)\) is the distance between \(x\) and the charge at \(x = {\rm{11}}{\rm{.00 cm}}\).

Substitute \({\rm{9}} \times {\rm{1}}{{\rm{0}}^{\rm{9}}}{\rm{ N}} \cdot {{\rm{m}}^{\rm{2}}}/{{\rm{C}}^{\rm{2}}}\) for \(K\), \[1.00{\rm{ }}\mu {\rm{C}}\] for \(q\), \(3.00{\rm{ cm}}\) for \({r_3}\), \[5.00 cm\] for \({r_5}\), \(8.00{\rm{ cm}}\) for \[{r_8}\], and \(11.00{\rm{ cm}}\) for \({r_{11}}\).

\[\begin{array}{c}\frac{{2 \times \left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {8.00{\rm{ cm}}} \right) - x} \right]}^2}}} = \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {x - \left( {3.00{\rm{ cm}}} \right)} \right]}^2}}} + \frac{{2 \times \left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {8.00{\rm{ cm}}} \right) - x} \right]}^2}}} - \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {11.00{\rm{ cm}}} \right) - x} \right]}^2}}}\\0 = \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {x - \left( {3.00{\rm{ cm}}} \right)} \right]}^2}}} - \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {11.00{\rm{ cm}}} \right) - x} \right]}^2}}}\\\frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {x - \left( {3.00{\rm{ cm}}} \right)} \right]}^2}}} = \frac{{\left( {1.00{\rm{ }}\mu {\rm{C}}} \right)}}{{{{\left[ {\left( {11.00{\rm{ cm}}} \right) - x} \right]}^2}}}\\{\left[ {x - \left( {3.00{\rm{ cm}}} \right)} \right]^2} = {\left[ {\left( {11.00{\rm{ cm}}} \right) - x} \right]^2}\end{array}\]

Taking square root both sides,

\[\begin{array}{c}x - \left( {{\rm{3}}{\rm{.00 cm}}} \right) = \left( {{\rm{11}}{\rm{.00 cm}}} \right) - x\\{\rm{2}}x = \left( {{\rm{11}}{\rm{.00 cm}}} \right) + \left( {{\rm{3}}{\rm{.00 cm}}} \right)\\{\rm{2}}x = {\rm{14}}{\rm{.00 cm}}\\x = {\rm{7}}{\rm{.00 cm}}\end{array}\]\[\]

Hence, the electric field at \(x = {\rm{7}}{\rm{.00 cm}}\) will be same for the \( - 2q\) alone.

04

(c) Place between 0.00 and 8.00 cm where the electric field is zero

Since, the field is uniform. Hence, there would be not point between \(0.00\) and \(8.00{\rm{ cm}}\) where the electric field is zero.

05

(d) Electric field rapidly approaches zero

At very large positive or negative values of \(x\), the electric field approaches zero because the distance from the charges approaches infinity.

Since, the net charge in Figure 18.52 (a) is zero. Thus, the electric field approaches zero more rapidly.

06

(e) Point on right of 11.00 cm where the electric field is zero

Let at \(x\), right of \(11.00{\rm{ cm}}\) electric field be zero.

The electric field at \(x\) is represented as,

Electric field at \(x\)

The electric field at \(x\) is,

\[\begin{array}{c}E = {E_3} - {E_8} + {E_{11}}\\ = \frac{{K\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} - \frac{{K\left( {2q} \right)}}{{{{\left( {x - {r_8}} \right)}^2}}} + \frac{{K\left( q \right)}}{{{{\left( {x - {r_{11}}} \right)}^2}}}\\ = K\left[ {\frac{{\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} - \frac{{\left( {2q} \right)}}{{{{\left( {x - {r_8}} \right)}^2}}} + \frac{{\left( q \right)}}{{{{\left( {x - {r_{11}}} \right)}^2}}}} \right]\end{array}\]

Here, \(K\) is the electrostatic force constant, \(q\) is the charge, \(\left( {x - {r_3}} \right)\) is the distance between \(x\) and the charge at \(x = {\rm{3}}{\rm{.00 cm}}\), \(\left( {x - {r_8}} \right)\) is the distance between \(x\) and the charge at \(x = {\rm{8}}{\rm{.00 cm}}\), and \(\left( {x - {r_{11}}} \right)\) is the distance between \(x\) and the charge at \(x = 11.00{\rm{ cm}}\).

Since, the total electric field is zero. Therefore,

\(\begin{array}{c}E = K\left[ {\frac{{\left( q \right)}}{{{{\left( {x - {r_3}} \right)}^2}}} - \frac{{\left( {2q} \right)}}{{{{\left( {x - {r_8}} \right)}^2}}} + \frac{{\left( q \right)}}{{{{\left( {x - {r_{11}}} \right)}^2}}}} \right]\\\frac{E}{{Kq}} = \frac{1}{{{{\left( {x - {r_3}} \right)}^2}}} - \frac{2}{{{{\left( {x - {r_8}} \right)}^2}}} + \frac{1}{{{{\left( {x - {r_{11}}} \right)}^2}}}\end{array}\)

Substitute \[3.00{\rm{ cm}}\] for \({r_3}\), \(5.00{\rm{ cm}}\) for \[{r_5}\], \(8.00{\rm{ cm}}\) for \({r_8}\), and \(11.00{\rm{ cm}}\) for \({r_{11}}\).

\[\frac{E}{{Kq}} = \frac{{\rm{1}}}{{{{\left[ {x - \left( {{\rm{3}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}} - \frac{{\rm{2}}}{{{{\left[ {x - \left( {{\rm{8}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}}{\rm{ + }}\frac{{\rm{1}}}{{{{\left[ {x - \left( {{\rm{11}}{\rm{.00 cm}}} \right)} \right]}^{\rm{2}}}}}\]

Plotting this polynomial,

Plot for \(\frac{E}{{Kq}}\) vs \[x\]

From graph, it is clear that the electric field is zero \(x = {\rm{5}}{\rm{.148 cm}}\), \(x = {\rm{9}}{\rm{.745 cm}}\), and \(x = {\rm{30}}{\rm{.607 cm}}\).

Hence, the position right to the point \(x = {\rm{11}}{\rm{.00 cm}}\) where the electric field is zero is \(30.607{\rm{ cm}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider identical spherical conducting space ships in deep space where gravitational fields from other bodies are negligible compared to the gravitational attraction between the ships. Construct a problem in which you place identical excess charges on the space ships to exactly counter their gravitational attraction. Calculate the amount of excess charge needed. Examine whether that charge depends on the distance between the centers of the ships, the masses of the ships, or any other factors. Discuss whether this would be an easy, difficult, or even impossible thing to do in practice.

Find the total Coulomb force on the charge \(q\) in Figure 18.53, given that \(q = {\rm{1}}{\rm{.00 }}\mu {\rm{C}}\), \({q_a} = {\rm{2}}{\rm{.00 }}\mu {\rm{C}}\), \({q_b} = - {\rm{3}}{\rm{.00 }}\mu {\rm{C}}\), \({q_c} = - {\rm{4}}{\rm{.00 }}\mu {\rm{C}}\) , and \({q_d} = + {\rm{1}}{\rm{.00 }}\mu {\rm{C}}\). The square is \({\rm{50}}{\rm{.0 cm}}\) on a side.

Common static electricity involves charges ranging from nanocoulombs to microcoulombs. (a) How many electrons are needed to form a charge of –2.00 nC (b) How many electrons must be removed from a neutral object to leave a net charge of 0.500 µC?

Tollbooth stations on roadways and bridges usually have a piece of wire stuck in the pavement before them that will touch a car as it approaches. Why is this done?

The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the charge on an electron. In it, oil drops were suspended against the gravitational force by a vertical electric field. (See Figure 18.58.) Given the oil drop to be\(1.00{\rm{ }}\mu {\rm{m}}\)in radius and have a density of\(920{\rm{ kg}}/{{\rm{m}}^3}\): (a) Find the weight of the drop. (b) If the drop has a single excess electron, find the electric field strength needed to balance its weight.

Figure 18.58 In the Millikan oil drop experiment, small drops can be suspended in an electric field by the force exerted on a single excess electron. Classically, this experiment was used to determine the electron charge\({q_e}\)by measuring the electric field and mass of the drop.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free