Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Find the total electric field at\(x = 1.00{\rm{ cm}}\)in Figure 18.52(b) given that\(q = {\rm{5}}{\rm{.00 nC}}\). (b) Find the total electric field at\(x = {\rm{11}}{\rm{.00 cm}}\)in Figure 18.52(b). (c) If the charges are allowed to move and eventually be brought to rest by friction, what will the final charge configuration be? (That is, will there be a single charge, double charge, etc., and what will its value(s) be?)

Figure 18.52 (a) Point charges located at \({\bf{3}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{11}}.{\bf{0}}{\rm{ }}{\bf{cm}}\) along the x-axis. (b) Point charges located at \({\bf{1}}.{\bf{00}},{\rm{ }}{\bf{5}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{14}}.{\bf{0}}{\rm{ }}{\bf{cm}}\) along the x-axis

Short Answer

Expert verified

(a) The total electric field at \(x = 1.00{\rm{ cm}}\) is \( - \infty \).

(b) The total electric field at \(x = 11.00{\rm{ cm}}\) is \(2.035 \times {10^5}{\rm{ N}}/{\rm{C}}\).

(c) The final charge of the configuration is \( + q\).

Step by step solution

01

Total electric field

Electric field is a vector quantity given as,

\(E = \frac{{Kq}}{{{r^2}}}\)

Here,\(K\)is the electrostatic force constant\(\left( {K = 9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}} \right)\).

The total electric field created by system of multiple charges is the vector sum of the individual field created by each charge.

02

(a) Total electric field at x=1.00 cm

The total electric field created at \(x = 1.00{\rm{ cm}}\) is,

E = Kq/r2

Here, \(K\) is the electrostatic force constant, \(q\) is the charge, \(\left| {{r_1} - {r_1}} \right|\) is the distance of the charge at \(x = 1.00{\rm{ cm}}\) and \(x = 1.00{\rm{ cm}}\), \(\left| {{r_1} - {r_5}} \right|\) is the distance of the charge at \({\mathop{\rm x}\nolimits} = 5.00 cm\) and \(x = 1.00{\rm{ cm}}\), \(\left| {{r_1} - {r_8}} \right|\) is the distance of the charge at \(x = 8.00{\rm{ cm}}\) and \(x = 1.00{\rm{ cm}}\), and \(\left| {{r_1} - {r_{14}}} \right|\) is the distance of the charge at \(x = 14.00{\rm{ cm}}\) and .

Substitute for , \(5.00{\rm{ nC}}\) for \(q\), \(1.00{\rm{ cm}}\) for \({r_1}\), \({\rm{5}}{\rm{.00 cm}}\) for \({r_5}\), \({\rm{8}}{\rm{.00 cm}}\) for \({r_8}\), and \(14.00{\rm{ cm}}\) for \({r_{14}}\).

\(\begin{array}{c}E = \left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}} \right) \times \left[ \begin{array}{l}\frac{{\left( { - 2 \times 5{\rm{ nC}}} \right)}}{{{{\left| {\left( {1{\rm{ cm}}} \right) - \left( {1{\rm{ cm}}} \right)} \right|}^2}}} + \frac{{\left( {5{\rm{ nC}}} \right)}}{{{{\left| {\left( {1{\rm{ cm}}} \right) - \left( {5{\rm{ cm}}} \right)} \right|}^2}}}\\ + \frac{{\left( {3 \times 5{\rm{ nC}}} \right)}}{{{{\left| {\left( {1{\rm{ cm}}} \right) - \left( {8{\rm{ cm}}} \right)} \right|}^2}}} + \frac{{\left( { - 1 \times 5{\rm{ nC}}} \right)}}{{{{\left| {\left( {1{\rm{ cm}}} \right) - \left( {14{\rm{ cm}}} \right)} \right|}^2}}}\end{array} \right]\\ = - \infty \end{array}\)

Hence, the total electric field at \(x = 1.00{\rm{ cm}}\) is \( - \infty \).

03

(b) Total electric field at x=11.00 cm

The total electric field created at \(x = 11.00{\rm{ cm}}\) is represented as,

Electric field at \(x = 11.00{\rm{ cm}}\)

The total electric field created at \(x = 11.00{\rm{ cm}}\) is,

\(\begin{array}{c}E = - {E_1} + {E_5} + {E_8} + {E_{14}}\\ = - \frac{{K\left( {2q} \right)}}{{{{\left| {{r_{11}} - {r_1}} \right|}^2}}} + \frac{{K\left( q \right)}}{{{{\left| {{r_{11}} - {r_5}} \right|}^2}}} + \frac{{K\left( {3q} \right)}}{{{{\left| {{r_{11}} - {r_8}} \right|}^2}}} + \frac{{K\left( q \right)}}{{{{\left| {{r_{11}} - {r_{14}}} \right|}^2}}}\\ = K\left( { - \frac{{\left( {2q} \right)}}{{{{\left| {{r_{11}} - {r_1}} \right|}^2}}} + \frac{{\left( q \right)}}{{{{\left| {{r_{11}} - {r_5}} \right|}^2}}} + \frac{{\left( {3q} \right)}}{{{{\left| {{r_{11}} - {r_8}} \right|}^2}}} + \frac{{\left( q \right)}}{{{{\left| {{r_{11}} - {r_{14}}} \right|}^2}}}} \right)\end{array}\)

Here, \(\frac{1}{2}\) is the electrostatic force constant, \(q\) is the charge, \(\left| {{r_{11}} - {r_1}} \right|\) is the distance of the charge at \(x = 11.00{\rm{ cm}}\) and \(x = 1.00{\rm{ cm}}\), \(\left| {{r_{11}} - {r_5}} \right|\) is the distance of the charge at \(x = 5.00{\rm{ cm}}\) and \(x = 11.00{\rm{ cm}}\), \(\left| {{r_{11}} - {r_8}} \right|\) is the distance of the charge at \(x = 8.00{\rm{ cm}}\) and \(x = 11.00{\rm{ cm}}\), and \(\left| {{r_{11}} - {r_{14}}} \right|\) is the distance of the charge at \(x = 14.00{\rm{ cm}}\) and \(x = 11.00{\rm{ cm}}\).

Substitute \(9 \times {10^9}{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}\) for \(K\), \(5.00{\rm{ nC}}\) for \(q\), \(1.00{\rm{ cm}}\) for \({r_1}\), \(5.00{\rm{ cm}}\) for \({r_5}\), \({\rm{8}}{\rm{.00 cm}}\) for \({r_8}\), \(11.00{\rm{ cm}}\) for \({r_{11}}\) and \(14.00{\rm{ cm}}\) for \({r_{14}}\).

\(\begin{array}{c}E = \left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}} \right) \times \left[ \begin{array}{l} - \frac{{\left( {2 \times 5{\rm{ nC}}} \right)}}{{{{\left| {\left( {11{\rm{ cm}}} \right) - \left( {1{\rm{ cm}}} \right)} \right|}^2}}} + \frac{{\left( {5{\rm{ nC}}} \right)}}{{{{\left| {\left( {11{\rm{ cm}}} \right) - \left( {5{\rm{ cm}}} \right)} \right|}^2}}}\\ + \frac{{\left( {3 \times 5{\rm{ nC}}} \right)}}{{{{\left| {\left( {11{\rm{ cm}}} \right) - \left( {8{\rm{ cm}}} \right)} \right|}^2}}} + \frac{{\left( {5{\rm{ nC}}} \right)}}{{{{\left| {\left( {11{\rm{ cm}}} \right) - \left( {14{\rm{ cm}}} \right)} \right|}^2}}}\end{array} \right]\\ = \left( {9 \times {{10}^9}{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}} \right) \times \left[ \begin{array}{l} - \frac{{\left( {10{\rm{ nC}}} \right) \times \left( {\frac{{{{10}^{ - 9}}{\rm{ C}}}}{{1{\rm{ nC}}}}} \right)}}{{{{\left| {\left( {10{\rm{ cm}}} \right) \times \left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1{\rm{ cm}}}}} \right)} \right|}^2}}} + \frac{{\left( {5{\rm{ nC}}} \right) \times \left( {\frac{{{{10}^{ - 9}}{\rm{ C}}}}{{1{\rm{ nC}}}}} \right)}}{{{{\left| {\left( {6{\rm{ cm}}} \right) \times \left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1{\rm{ cm}}}}} \right)} \right|}^2}}}\\ + \frac{{\left( {15{\rm{ nC}}} \right) \times \left( {\frac{{{{10}^{ - 9}}{\rm{ C}}}}{{1{\rm{ nC}}}}} \right)}}{{{{\left| {\left( {3{\rm{ cm}}} \right) \times \left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1{\rm{ cm}}}}} \right)} \right|}^2}}} + \frac{{\left( {5{\rm{ nC}}} \right) \times \left( {\frac{{{{10}^{ - 9}}{\rm{ C}}}}{{1{\rm{ nC}}}}} \right)}}{{{{\left| { - \left( {3{\rm{ cm}}} \right) \times \left( {\frac{{{{10}^{ - 2}}{\rm{ m}}}}{{1{\rm{ cm}}}}} \right)} \right|}^2}}}\end{array} \right]\\ = 2.035 \times {10^5}{\rm{ N}}/{\rm{C}}\end{array}\)

Hence, the total electric field at \(x = 11.00{\rm{ cm}}\) is \(2.035 \times {10^5}{\rm{ N}}/{\rm{C}}\).

04

(c) Net charge

According to the additive property of the charge, the net charge on the system is,

\(\begin{array}{c}{q_{net}} = - 2q + q + 3q - q\\ = + q\end{array}\)

Hence, the final charge of the configuration is \( + q\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free