Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Why must the test charge \({\rm{q}}\) in the definition of the electric field be vanishingly small?

Short Answer

Expert verified

The test charge \({\rm{q}}\) must be vanishingly small so that it does not affect the electric field of the other charge.

Step by step solution

01

Electric field

Electric field is a vector quantity defined as the force acting per unit charge. Mathematically,

E=Fq

Here,F is the force acting on the test charge q.

The SI unit of electric field is newton per coulomb (N/C).

02

The test charge must be vanishingly small

The test charge must be vanishingly small to ensure that the test charge does not alter the electric field that the other charge produces \(\vec E\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Find the electric field at\(x = 5.00{\rm{ cm}}\)in Figure 18.52 (a), given that\(q = 1.00{\rm{ }}\mu C\). (b) At what position between\(3.00\)and\(8.00{\rm{ cm}}\)is the total electric field the same as that for\( - 2q\)alone? (c) Can the electric field be zero anywhere between\(0.00\)and\(8.00{\rm{ cm}}\)? (d) At very large positive or negative values of\(x\), the electric field approaches zero in both (a) and (b). In which does it most rapidly approach zero and why? (e) At what position to the right of\(11.0{\rm{ cm}}\)is the total electric field zero, other than at infinity? (Hint: A graphing calculator can yield considerable insight in this problem.)

Figure 18.52 (a) Point charges located at\[{\bf{3}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{11}}.{\bf{0}}{\rm{ }}{\bf{cm}}\]along the x-axis. (b) Point charges located at\[{\bf{1}}.{\bf{00}},{\rm{ }}{\bf{5}}.{\bf{00}},{\rm{ }}{\bf{8}}.{\bf{00}},{\rm{ }}{\bf{and}}{\rm{ }}{\bf{14}}.{\bf{0}}{\rm{ }}{\bf{cm}}\]along the x-axis

Given the polar character of water molecules, explain how ions in the air form nucleation centers for rain droplets.

Are you relatively safe from lightning inside an automobile? Give two reasons.

(a) Calculate the electric field strength near a 10.0 cm diameter conducting sphere that has 1.00 C of excess charge on it. (b) What is unreasonable about this result? (c) Which assumptions are responsible?

Find the electric field at the location of \({q_a}\) in Figure 18.53 given that \({q_b} = {q_c} = {q_d} = + 2.00{\rm{ nC}}\), \(q = - 1.00{\rm{ nC}}\), and the square is \({\rm{20}}{\rm{.0 cm}}\) on a side.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free