Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a traction setup for a broken bone, with pulleys and rope available, how might we be able to increase the force along the femur using the same weight? (See Figure 4.30.) (Note that the femur is the shin bone shown in this image.

Short Answer

Expert verified

The force can be increased or decreased using the same weight using pulleys and ropes.

Step by step solution

01

The tension in the rope is equal to the weight of the leg.Step 1: Concept of Normal Force

Whatever supports a load, it must supply an upward force equal to the weight of the load. This upward force is called the normal force.

02

Determine the tension in the rope

Referring to figure 4.30, the traction setup shown helps in increasing the force across the broken bone using ropes and pulleys. By changing the angleθ shown in the figure, the magnitude of the force can be increased because as the value of θ is increased 0°to90°, the value of sinθalso increases.

Hence, the force can be increased or decreased using the same weight.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the ratio of the strength of the strong nuclear force to that of the electromagnetic force? Based on this ratio, you might expect that the strong force dominates the nucleus, which is true for small nuclei. Large nuclei, however, have sizes greater than the range of the strong nuclear force. At these sizes, the electromagnetic force begins to affect nuclear stability. These facts will be used to explain nuclear fusion and fission later in this text.

A brave but inadequate rugby player is being pushed backward by an opposing player who is exerting a force of 800 N on him. The mass of the losing player plus equipment is 90.0 kg, and he is accelerating at 1.20 m/s2 backward. (a) What is the force of friction between the losing player’s feet and the grass? (b) What force does the winning player exert on the ground to move forward if his mass plus equipment is 110 kg?

(c) Draw a sketch of the situation showing the system of interest used to solve each part. For this situation, draw a free-body diagram and write the net force equation.

(a) Give an example of different net external forces acting on the same system to produce different accelerations. (b) Give an example of the same net external force acting on systems of different masses, producing different accelerations. (c) What law accurately describes both effects? State it in words and as an equation.

Integrated Concepts

An elevator filled with passengers has a mass of 1700 kg.

(a) The elevator accelerates upward from rest at a rate of 1.20 m/s2 for 1.50 s. Calculate the tension in the cable supporting the elevator.

(b) The elevator continues upward at constant velocity for 8.50 s. What is the tension in the cable during this time?

(c) The elevator decelerates at a rate of 0.600 m/s2 for 3.00 s. What is the tension in the cable during deceleration?

(d) How high has the elevator moved above its original starting point, and what is its final velocity?

Integrated Concepts

A 2.50-kg fireworks shell is fired straight up from a mortar and reaches a height of 110 m.

(a) Neglecting air resistance (a poor assumption, but we will make it for this example), calculate the shell’s velocity when it leaves the mortar.

(b) The mortar itself is a tube 0.450 m long. Calculate the average acceleration of the shell in the tube as it goes from zero to the velocity found in (a).

(c) What is the average force on the shell in the mortar? Express your answer in newtons and as a ratio to the weight of the shell.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free