(c)
Substitute the values and determine the wavelength as follows:
\[\begin{array}{l}\frac{1}{\lambda } = \left( {1.097 \times {{10}^7}\;{{\rm{m}}^{ - 1}}} \right)\left( {\frac{1}{{{2^2}}} - \frac{1}{{{3^2}}}} \right)\\\frac{1}{\lambda } = \left( {1.097 \times {{10}^7}\;{{\rm{m}}^{ - 1}}} \right)\left( {\frac{1}{4} - \frac{1}{9}} \right)\\\frac{1}{\lambda } = 1523611.11\;{{\rm{m}}^{ - 1}}\\\lambda = \frac{1}{{1523611.11\;{{\rm{m}}^{ - 1}}}}\end{array}\]
Solve further as:
\[\begin{array}{l}\frac{1}{\lambda } = \left( {1.097 \times {{10}^7}\;{{\rm{m}}^{ - 1}}} \right)\left( {\frac{1}{{{2^2}}} - \frac{1}{{{3^2}}}} \right)\\\frac{1}{\lambda } = \left( {1.097 \times {{10}^7}\;{{\rm{m}}^{ - 1}}} \right)\left( {\frac{1}{4} - \frac{1}{9}} \right)\\\frac{1}{\lambda } = 1523611.11\;{{\rm{m}}^{ - 1}}\\\lambda = \frac{1}{{1523611.11\;{{\rm{m}}^{ - 1}}}}\end{array}\]
Substitute the values and determine the values as:
\[\begin{array}{l}\left( {1.92 \times {{10}^{ - 6}}\;{\rm{m}}} \right)\sin \theta = \left( 2 \right)\left( {656.33 \times {{10}^{ - 9}}\;{\rm{m}}} \right)\\\sin \theta = 0.684\\\theta = {\sin ^{ - 1}}\left( {0.684} \right)\\\theta = 43.2^\circ \end{array}\]
Therefore, the required angle at which the second order maximum be for the first line is 43.2o.