Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is the magnitude of the angular momentum for an l = 1 electron?

(b) Calculate the magnitude of the electron’s spin angular momentum.

(c) What is the ratio of these angular momenta?

Short Answer

Expert verified

a)The magnitude of angular momentum for an object is l = 1 electron is \[1.492 \times {10^{ - 34}}\;{\rm{J}} \cdot {\rm{s}}\].

b)The spin angular momentum of an electron has a value of\[9.1327 \times {10^{ - 35}}\;{\rm{J}} \cdot {\rm{s}}\].

c)The angular momentum to spin angular momentum ratio is 1.633.

Step by step solution

01

Definition of angular momentum and magnitude

The magnitude of angular momentum is given as

\[{\bf{L = }}\left( {\sqrt {{\bf{l}}\left( {{\bf{l + 1}}} \right)} } \right)\left( {\frac{{\bf{h}}}{{{\bf{2\pi }}}}} \right)\]

Here,

L = Angular momentum

l = Angular momentum quantum

h = Planck's constant

The magnitude of electron's spin angular momentum is given as

\[{\bf{S = }}\left( {\sqrt {{\bf{s}}\left( {{\bf{s + 1}}} \right)} } \right)\left( {\frac{{\bf{h}}}{{{\bf{2\pi }}}}} \right)\]

Here,

S = Electron's spin angular momentum

s = Spin quantum number

h = Planck's Constant

02

Calculating the magnitude of the angular momentum

a)

Magnitude of angular momentum is calculated:

\[\begin{array}{c}L = \left( {\sqrt {1\left( {1 + 1} \right)} } \right)\left( {\frac{{6.63 \times {{10}^{ - 3}}}}{{2\pi }}} \right)\;{\rm{J}} \cdot {\rm{s}}\\L = \sqrt 2 \left( {1.055 \times {{10}^{ - 34}}} \right)\;{\rm{J}} \cdot {\rm{s}}\\L = 1.492 \times {10^{ - 34}}\;{\rm{J}} \cdot {\rm{s}}\end{array}\]

Hence, the magnitude of angular momentum for an l = 1 electron is \[1.492 \times {10^{ - 34}}\;\;{\rm{J}} \cdot {\rm{s}}\].

03

Step 3: Calculate the magnitude

b)

Magnitude ofspin angular momentum is calculated:

\[\begin{array}{c}S = \left( {\sqrt {\frac{1}{2}\left( {\frac{1}{2} + 1} \right)} } \right)\left( {\frac{{6.63 \times {{10}^{ - 34}}}}{{2\pi }}} \right)\;{\rm{J}} \cdot {\rm{s}}\\S = \left( {\sqrt {\frac{3}{4}} } \right)\left( {\frac{{6.63 \times {{10}^{ - 34}}}}{{2\pi }}} \right)\;{\rm{J}} \cdot {\rm{s}}\\S = 9.1327 \times {10^{ - 35}}\;{\rm{J}} \cdot {\rm{s}}\end{array}\]

Thus, the magnitude of the electron's spin angular momentum is \[9.1327 \times {10^{ - 35}}\;{\rm{J}} \cdot {\rm{s}}\].

04

Finding the ratio of these angular momenta

c)

Determine the ratio of the angular momentum

\[\begin{array}{c}\frac{L}{s} = \frac{{1.492 \times {{10}^{ - 3}}}}{{9.1327 \times {{10}^{ - 13}}}}\\\frac{L}{s} = 1.633\end{array}\]

Thus, the ratio of angular momentum to spin angular momentum is 1.633.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free