Chapter 9: Problem 2
A donut-shaped space station (outer radius \(R\) ) arranges for artificial gravity by spinning on the axis of the donut with angular velocity \(\omega .\) Sketch the forces on, and accelerations of, an astronaut standing in the station (a) as seen from an inertial frame outside the station and (b) as seen in the astronaut's personal rest frame (which has a centripetal acceleration \(A=\omega^{2} R\) as seen in the inertial frame). What angular velocity is needed if \(R=40\) meters and the apparent gravity is to equal the usual value of about \(10 \mathrm{m} / \mathrm{s}^{2} ?\) (c) What is the percentage difference between the perceived \(g\) at a six-foot astronaut's feet \((R=40 \mathrm{m})\) and at his head \((R=38 \mathrm{m}) ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.