Chapter 7: Problem 39
(a) Write down the Lagrangian for a particle moving in three dimensions under the influence of a conservative central force with potential energy \(U(r),\) using spherical polar coordinates \((r, \theta, \phi)\). (b) Write down the three Lagrange equations and explain their significance in terms of radial acceleration, angular momentum, and so forth. (The \(\theta\) equation is the tricky one, since you will find it implies that the \(\phi\) component of \(\ell\) varies with time, which seems to contradict conservation of angular momentum. Remember, however, that \(\ell_{\phi}\) is the component of \(\ell\) in a variable direction.) (c) Suppose that initially the motion is in the equatorial plane (that is, \(\theta_{0}=\pi / 2\) and \(\dot{\theta}_{0}=0\) ). Describe the subsequent motion. (d) Suppose instead that the initial motion is along a line of longitude (that is, \(\dot{\phi}_{0}=0\) ). Describe the subsequent motion.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.