Chapter 5: Problem 2
The potential energy of two atoms in a molecule can sometimes be approximated by the Morse function, $$U(r)=A\left[\left(e^{(R-r) / S}-1\right)^{2}-1\right]$$ where \(r\) is the distance between the two atoms and \(A, R,\) and \(S\) are positive constants with \(S \ll R .\) Sketch this function for \(0 < r < \infty\). Find the equilibrium separation \(r_{\mathrm{o}}\), at which \(U(r)\) is minimum. Now write \(r=r_{\mathrm{o}}+x\) so that \(x\) is the displacement from equilibrium, and show that, for small displacements, \(U\) has the approximate form \(U=\) const \(+\frac{1}{2} k x^{2} .\) That is, Hooke's law applies. What is the force constant \(k ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.