Chapter 4: Problem 9
(a) The force exerted by a one-dimensional spring, fixed at one end, is \(F=-k x,\) where \(x\) is the displacement of the other end from its equilibrium position. Assuming that this force is conservative (which it is) show that the corresponding potential energy is \(U=\frac{1}{2} k x^{2},\) if we choose \(U\) to be zero at the equilibrium position. (b) Suppose that this spring is hung vertically from the ceiling with a mass \(m\) suspended from the other end and constrained to move in the vertical direction only. Find the extension \(x_{\mathrm{o}}\) of the new equilibrium position with the suspended mass. Show that the total potential energy (spring plus gravity) has the same form \(\frac{1}{2} k y^{2}\) if we use the coordinate \(y\) equal to the displacement measured from the new equilibrium position at \(x=x_{\mathrm{o}}\) (and redefine our reference point so that \(U=0\) at \(y=0\) ).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.