Chapter 4: Problem 25
The proof that the condition \(\nabla \times \mathbf{F}=0\) guarantees the path independence of the work \(\int_{1}^{2} \mathbf{F} \cdot d \mathbf{r}\) done by \(\mathbf{F}\) is unfortunately too lengthy to be included here. However, the following three exercises capture the main points: \(^{16}\) (a) Show that the path independence of \(\int_{1}^{2} \mathbf{F} \cdot d \mathbf{r}\) is equivalent to the statement that the integral \(\oint_{\mathrm{T}} \mathbf{F} \cdot d \mathbf{r}\) around any closed path \(\Gamma\) is zero. (By tradition, the symbol \(\oint\) is used for integrals around a closed path \(-\) a path that starts and stops at the same point.) [Hint: For any two points 1 and 2 and any two paths from 1 to 2 , consider the work done by \(\mathbf{F}\) going from 1 to 2 along the first path and then back to 1 along the second in the reverse direction. \((\) b) Stokes's theorem asserts that \(\oint_{\mathrm{T}} \mathbf{F} \cdot d \mathbf{r}=\int(\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} d A,\) where the integral on the right is a surface integral over a surface for which the path \(\Gamma\) is the boundary, and \(\hat{\mathbf{n}}\) and \(d A\) are a unit normal to the surface and an element of area. Show that Stokes's theorem implies that if \(\nabla \times \mathbf{F}=0\) everywhere, then \(\oint_{\mathrm{T}} \mathbf{F} \cdot d \mathbf{r}=0 .\) (c) While the general proof of Stokes's theorem is beyond our scope here, the following special case is quite easy to prove (and is an important step toward the general proof): Let \(\Gamma\) denote a rectangular closed path lying in a plane perpendicular to the \(z\) direction and bounded by the lines \(x=B, x=B+b, y=C\) and \(y=C+c .\) For this simple path (traced counterclockwise as seen from above), prove Strokes's theorem that \(\oint_{\Gamma} \mathbf{F} \cdot d \mathbf{r}=\int(\mathbf{\nabla} \times \mathbf{F}) \cdot \hat{\mathbf{n}} d A\) where \(\hat{\mathbf{n}}=\hat{\mathbf{z}}\) and the integral on the right runs over the flat, rectangular area inside \(\Gamma\). [Hint: The integral on the left contains four terms, two of which are integrals over \(x\) and two over \(y\). If you pair them in this way, you can combine each pair into a single integral with an integrand of the form \(F_{x}(x, C+c, z)-F_{x}(x, C, z)\) (or a similar term with the roles of \(x\) and \(y\) exchanged). You can rewrite this integrand as an integral over \(y\) of \(\partial F_{x}(x, y, z) / \partial y\) (and similarly with the other term), and you're home.]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.