Chapter 3: Problem 23
[Computer] A grenade is thrown with initial velocity \(\mathbf{v}_{\mathrm{o}}\) from the origin at the top of a high cliff, subject to negligible air resistance. (a) Using a suitable plotting program, plot the orbit, with the following parameters: \(\mathbf{v}_{\mathrm{o}}=(4,4), g=1,\) and \(0 \leq t \leq 4\) (and with \(x\) measured horizontally and \(y\) vertically up). Add to your plot suitable marks (dots or crosses, for example) to show the positions of the grenade at \(t=1,2,3,4 .\) (b) At \(t=4,\) when the grenade's velocity is \(\mathbf{v},\) it explodes into two equal pieces, one of which moves off with velocity \(\mathbf{v}+\Delta \mathbf{v} .\) What is the velocity of the other piece? (c) Assuming that \(\Delta \mathbf{v}=(1,3),\) add to your original plot the paths of the two pieces for \(4 \leq t \leq 9 .\) Insert marks to show their positions at \(t=5,6,7,8,9\). Find some way to show clearly that the CM of the two pieces continues to follow the original parabolic path.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.