Chapter 15: Problem 91
An excited state \(X^{*}\) of an atom at rest drops to its ground state \(X\) by emitting a photon. In atomic physics it is usual to assume that the energy \(E_{\gamma}\) of the photon is equal to the difference in energies of the two atomic states, \(\Delta E=\left(M^{*}-M\right) c^{2},\) where \(M\) and \(M^{*}\) are the rest masses of the ground and excited states of the atom. This cannot be exactly true, since the recoiling atom X must carry away some of the energy \(\Delta E .\) Show that in fact \(E_{\gamma}=\Delta E\left[1-\Delta E /\left(2 M^{*} c^{2}\right)\right] .\) Given that \(\Delta E\) is of order a few ev, while the lightest atom has \(M\) of order \(1 \mathrm{GeV} / c^{2},\) discuss the validity of the assumption that \(E_{\gamma}=\Delta E\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.