Chapter 15: Problem 19
A traveler in a rocket of proper length 2d sets up a coordinate system \(\mathcal{S}^{\prime}\) with its origin \(O^{\prime}\) anchored at the exact middle of the rocket and the \(x^{\prime}\) axis along the rocket's length. At \(t^{\prime}=0\) she ignites a flashbulb at \(O^{\prime} .\) (a) Write down the coordinates \(x_{\mathrm{F}}^{\prime}, t_{\mathrm{F}}^{\prime}\) and \(x_{\mathrm{B}}^{\prime}, t_{\mathrm{B}}^{\prime}\) for the arrival of the light at the front and back of the rocket. (b) Now consider the same experiment as observed from a frame \(\delta\) relative to which the rocket is traveling with speed \(V\) (with \(\delta\) and \(S\) ' in the standard configuration). Use the inverse Lorentz transformation to find the coordinates \(x_{\mathrm{F}}, t_{\mathrm{F}}\) and \(x_{\mathrm{B}}, t_{\mathrm{B}}\) for the arrival of the two signals. Explain clearly in words why the two arrivals are simultaneous in \(\mathcal{S}^{\prime}\) but not in \(\mathcal{S} .\) This phenomenon is called the relativity of simultaneity.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.