Chapter 13: Problem 35
A beam of particles is moving along an accelerator pipe in the \(z\) direction. The particles are uniformly distributed in a cylindrical volume of length \(L_{\mathrm{o}}\) (in the \(z\) direction) and radius \(R_{\mathrm{o}} .\) The particles have momenta uniformly distributed with \(p_{z}\) in an interval \(p_{\mathrm{o}} \pm \Delta p_{z}\) and the transverse momentum \(p_{\perp}\) inside a circle of radius \(\Delta p_{\perp} .\) To increase the particles' spatial density, the beam is focused by electric and magnetic fields, so that the radius shrinks to a smaller value \(R\). What does Liouville's theorem tell you about the spread in the transverse momentum \(p_{\perp}\) and the subsequent behavior of the radius \(R ?\) (Assume that the focusing does not affect either \(L_{\mathrm{o}}\) or \(\Delta p_{z}\).)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.