Chapter 1: Problem 40
A cannon shoots a ball at an angle \(\theta\) above the horizontal ground. (a) Neglecting air resistance, use Newton's second law to find the ball's position as a function of time. (Use axes with \(x\) measured horizontally and \(y\) vertically.) (b) Let \(r(t)\) denote the ball's distance from the cannon. What is the largest possible value of \(\theta\) if \(r(t)\) is to increase throughout the ball's flight? [Hint: Using your solution to part (a) you can write down \(r^{2}\) as \(x^{2}+y^{2},\) and then find the condition that \(r^{2}\) is always increasing.]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.