Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A cannon shoots a ball at an angle θ above the horizontal ground. (a) Neglecting air resistance, use Newton's second law to find the ball's position as a function of time. (Use axes with x measured horizontally and y vertically.) (b) Let r(t) denote the ball's distance from the cannon. What is the largest possible value of θ if r(t) is to increase throughout the ball's flight? [Hint: Using your solution to part (a) you can write down r2 as x2+y2, and then find the condition that r2 is always increasing.]

Short Answer

Expert verified
θ must be less than 45° for r(t) to always increase.

Step by step solution

01

Break Down the Problem

The exercise involves two main parts: deriving an expression for the ball's position using Newton's second law and then determining the condition under which the ball's distance from the cannon continuously increases. We'll first focus on finding the position as a function of time.
02

Derive Position as a Function of Time

Consider the initial velocity of the ball as v0 and it is launched at an angle θ. The initial velocity components can be written as v0x=v0cos(θ) and v0y=v0sin(θ). Using Newton's second law and neglecting air resistance, the only force acting on the ball is gravity, which affects only the vertical component (y). The equations of motion become: x(t)=v0cos(θ)t y(t)=v0sin(θ)t12gt2 where g is the acceleration due to gravity.
03

Express Distance as a Function of Time

The distance r(t) from the origin (cannon) can be expressed using Pythagoras' theorem: r(t)=x(t)2+y(t)2 Thus, r2(t)=(v0cos(θ)t)2+(v0sin(θ)t12gt2)2 Expanding this, we need to find the condition to ensure r2(t) is always increasing.
04

Find Condition for Increasing r2(t)

Differentiate r2(t) with respect to t and set it greater than zero for it to always increase: ddt((v0cos(θ)t)2+(v0sin(θ)t12gt2)2)>0 After simplifying, this leads to the condition: 2v02sin(θ)cos(θ)>gt The inequality must hold true for the entire flight. Simplifying gives:sin(2θ)>gtv0
05

Determine the Largest Possible Angle θ

The inequality sin(2θ) varies from 0 to 1, reaching its maximum when 2θ=90 or θ=45. Therefore, for the distance r(t) to continuously increase, the angle θ must be less than 45.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Newton's Second Law
Newton's Second Law is foundational in understanding projectile motion. It states that the acceleration of an object depends on two variables: the net force acting upon the object and the mass of the object. In our exercise, the cannonball's motion can be analyzed using this law.
Gravity is the only force acting on the cannonball, pulling it downwards. This means the horizontal motion is constant, while the vertical motion is accelerated by gravity.
To find the ball's position, we consider:
  • The horizontal component with no acceleration: x(t)=v0cos(θ)t
  • The vertical component with acceleration from gravity: y(t)=v0sin(θ)t12gt2
By using these equations, we capture how the ball moves through time in both the horizontal and vertical directions.
Parabolic Trajectory
Projectiles, like cannonballs, often follow a curved path known as a parabolic trajectory. This shape emerges due to the constant horizontal velocity and the accelerating vertical motion influenced by gravity.
When you throw or shoot something at an angle, both these motions come together, leading to the classic parabola shape.
Key points about parabolic trajectories:
  • The highest point, or apex, occurs when the vertical velocity component is zero. At this point, the projectile stops rising and starts falling.
  • The symmetry of the path means the descent mirrors the ascent.
Understanding this helps in predicting where and when the projectile will land, crucial for tasks like determining how far a cannonball will travel.
Optimal Launch Angle
The angle at which you launch a projectile can dramatically affect how far it travels. The optimal launch angle is the angle that provides the greatest range for a given initial speed.
For projectiles launched with the intent of maximizing distance, 45 degrees usually reigns supreme. This angle balances the vertical and horizontal components, optimizing both height and range.
However, in our exercise, the condition differs slightly. To ensure the ball’s distance from the cannon always increases:
  • The launch angle θ should be less than 45 degrees.
  • This ensures the derivative of the squared distance is positive, avoiding the situation where the projectile starts falling back toward the cannon.
Choosing the correct launch angle is vital for controlling and predicting projectile behavior effectively.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The hallmark of an inertial reference frame is that any object which is subject to zero net force will travel in a straight line at constant speed. To illustrate this, consider the following: I am standing on a level floor at the origin of an inertial frame S and kick a frictionless puck due north across the floor. (a) Write down the x and y coordinates of the puck as functions of time as seen from my inertial frame. (Use x and y axes pointing east and north respectively.) Now consider two more observers, the first at rest in a frame S that travels with constant velocity v due east relative to S, the second at rest in a frame S that travels with constant acceleration due east relative to S. (All three frames coincide at the moment when I kick the puck, and S is at rest relative to S at that same moment.) (b) Find the coordinates x,y of the puck and describe the puck's path as seen from S. (c) Do the same for S Which of the frames is inertial?

The position of a moving particle is given as a function of time t to be r(t)=x^bcos(ωt)+y^csin(ωt)+z^vot where b,c,vo and ω are constants. Describe the particle's orbit.

An astronaut in gravity-free space is twirling a mass m on the end of a string of length R in a circle, with constant angular velocity ω Write down Newton's second law (1.48) in polar coordinates and find the tension in the string.

The unknown vector v satisfies bv=λ and b×v=c, where λ,b, and c are fixed and known. Find v in terms of λ,b, and c

By applying Pythagoras's theorem (the usual two-dimensional version) twice over, prove that the length r of a three-dimensional vector r=(x,y,z) satisfies r2=x2+y2+z2

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free