Chapter 1: Problem 36
A plane, which is flying horizontally at a constant speed \(v_{\mathrm{o}}\) and at a height \(h\) above the sea, must drop a bundle of supplies to a castaway on a small raft. (a) Write down Newton's second law for the bundle as it falls from the plane, assuming you can neglect air resistance. Solve your equations to give the bundle's position in flight as a function of time \(t\). (b) How far before the raft (measured horizontally) must the pilot drop the bundle if it is to hit the raft? What is this distance if \(v_{\mathrm{o}}=50 \mathrm{m} / \mathrm{s}\) \(h=100 \mathrm{m},\) and \(g \approx 10 \mathrm{m} / \mathrm{s}^{2} ?(\mathrm{c})\) Within what interval of time \((\pm \Delta t)\) must the pilot drop the bundle if it is to land within \(\pm 10\) m of the raft?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.