Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a system of two Einstein solids, \(A\) and \(B\), each containing 10 oscillators, sharing a total of 20 units of energy. Assume that the solids are weakly coupled, and that the total energy is fixed.

(a) How many different macrostates are available to this system?

(b) How many different microstates are available to this system?

(c) Assuming that this system is in thermal equilibrium, what is the probability of finding all the energy in solid \(A\) ?

(d) What is the probability of finding exactly half of the energy in solid \(A\) ?

(e) Under what circumstances would this system exhibit irreversible behavior?

Short Answer

Expert verified

(a) 21 macrostates are available

(b) Ωoverall=6.892×1010microstates are available

(c) the probability that all the energy is in solid Aat thermal equilibrium,P=1.453×10-4

(d) the probability in this case isP=0.1238

Step by step solution

01

find macrostates and microstates 

Suppose we have two systems of Einstein solids, Aand Bwith NA=NB=10and qA+qB=20

(a) the number of macrostates is therefore:

q+1=20+1=21

because we start counting 0 to 20.

(b) the number of microstates formula is given by:

ΩoverallNoverall,qoverall=qoverall+Noverall-1qoverall=qoverall+Noverall-1!qoverall!Noverall-1!

where,

qoverall=qA+qB=20,Noverall=NA+NB=20

so,

width="385">Ωoverall=20+20-120=(20+20-1)!20!(20-1)!=6.892×1010

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The mixing entropy formula derived in the previous problem actually applies to any ideal gas, and to some dense gases, liquids, and solids as well. For the denser systems, we have to assume that the two types of molecules are the same size and that molecules of different types interact with each other in the same way as molecules of the same type (same forces, etc.). Such a system is called an ideal mixture. Explain why, for an ideal mixture, the mixing entropy is given by

ΔSmixing=klnNNA

where Nis the total number of molecules and NAis the number of molecules of type A. Use Stirling's approximation to show that this expression is the same as the result of the previous problem when both Nand NAare large.

Calculate the number of possible five-card poker hands, dealt from a deck of 52 cards. (The order of cards in a hand does not matter.) A royal flush consists of the five highest-ranking cards (ace, king, queen, jack, 10) of any one of the four suits. What is the probability of being dealt a royal flush (on the first deal)?

The mathematics of the previous problem can also be applied to a one-dimensional random walk: a journey consisting of Nsteps, all the same sic, cache chosen randomly to be cither forward or backward. (The usual mental image is that of a drunk stumbling along an alley.)

(a) Where are you most likely to find yourself, after the end of a long random walk?

(b) Suppose you take a random walk of 10,000steps (say each a yard long). About how far from your starting point would you expect to be at the end?

(c) A good example of a random walk in nature is the diffusion of a molecule through a gas; the average step length is then the mean free path, as computed in Section 1.7.Using this model, and neglecting any small numerical factors that might arise from the varying step size and the multidimensional nature of the path, estimate the expected net displacement of an air molecule (or perhaps a carbon monoxide molecule traveling through air) in one second, at room temperature and atmospheric pressure. Discuss how your estimate would differ if the clasped time or the temperature were different. Check that your estimate is consistent with the treatment of diffusion in Section1.7.

Consider an ideal monatomic gas that lives in a two-dimensional universe ("flatland"), occupying an area Ainstead of a volume V. By following the same logic as above, find a formula for the multiplicity of this gas, analogous to equation 2.40.

This problem gives an alternative approach to estimating the width of the peak of the multiplicity function for a system of two large Einstein solids.

(a) Consider two identical Einstein solids, each with Noscillators, in thermal contact with each other. Suppose that the total number of energy units in the combined system is exactly 2N. How many different macrostates (that is, possible values for the total energy in the first solid) are there for this combined system?

(b) Use the result of Problem2.18to find an approximate expression for the total number of microstates for the combined system. (Hint: Treat the combined system as a single Einstein solid. Do not throw away factors of "large" numbers, since you will eventually be dividing two "very large" numbers that are nearly equal. Answer: 24N/8πN.)

(c) The most likely macrostate for this system is (of course) the one in which the energy is shared equally between the two solids. Use the result of Problem 2.18to find an approximate expression for the multiplicity of this macrostate. (Answer:24N/(4πN) .)

(d) You can get a rough idea of the "sharpness" of the multiplicity function by comparing your answers to parts (b) and (c). Part (c) tells you the height of the peak, while part (b) tells you the total area under the entire graph. As a very crude approximation, pretend that the peak's shape is rectangular. In this case, how wide would it be? Out of all the macrostates, what fraction have reasonably large probabilities? Evaluate this fraction numerically for the case N=1023.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free