Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the number of possible five-card poker hands, dealt from a deck of 52 cards. (The order of cards in a hand does not matter.) A royal flush consists of the five highest-ranking cards (ace, king, queen, jack, 10) of any one of the four suits. What is the probability of being dealt a royal flush (on the first deal)?

Short Answer

Expert verified

The chances of getting a royal flush on the first deal are slim Pflushes=1.539×106

Step by step solution

01

Step1:definition of probability

Probability is a measure of the likelihood of an event occurring. Many events are impossible to predict with 100% accuracy. We can only predict the likelihood of an event occurring using it, that is, how likely it is to occur. Probability can range between zero and one, with zero indicating an impossible event and one indicating a certain event.

02

Step2:Probability of royal flushes

Because there are52 cards in the deck, the number of ways to choose five cards from this deck is:

Ω(52,5)=52!5!(525)!=2598960

There are four royal flushes among these ways, so the probability of these flushes is:

Pflushes=42598960=1.539×106

Pflushes=1.539×106

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write e1023in the form 10x, for somex.

The natural logarithm function, ln, is defined so that elnx=xfor any positive numberx.
aSketch a graph of the natural logarithm function.
b Prove the identities
localid="1650331641178" lnab=lna+lnbandlocalid="1650331643409" lnab=blna
(c) Prove thatlocalid="1650331645612" ddxlnx=1x.
(d) Derive the useful approximation

localid="1650331649052" ln(1+x)x

which is valid when localid="1650331651790" |x|1. Use a calculator to check the accuracy of this approximation for localid="1650331654235" x=0.1and localid="1650331656447" x=0.01.

For an Einstein solid with four oscillators and two units of energy, represent each possible microstate as a series of dots and vertical lines, as used in the text to prove equation 2.9.

For a single large two-state paramagnet, the multiplicity function is very sharply peaked about N=N/2.

(a) Use Stirling's approximation to estimate the height of the peak in the multiplicity function.

(b) Use the methods of this section to derive a formula for the multiplicity function in the vicinity of the peak, in terms of xN(N/2). Check that your formula agrees with your answer to part (a) when x=0.

(c) How wide is the peak in the multiplicity function?

(d) Suppose you flip 1,000,000coins. Would you be surprised to obtain heads and 499,000 tails? Would you be surprised to obtain 510,000 heads and 490,000 tails? Explain.

Consider a two-state paramagnet with 1023elementary dipoles, with the total energy fixed at zero so that exactly half the dipoles point up and half point down.

(a) How many microstates are "accessible" to this system?

(b) Suppose that the microstate of this system changes a billion times per second. How many microstates will it explore in ten billion years (the age of the universe)?

(c) Is it correct to say that, if you wait long enough, a system will eventually be found in every "accessible" microstate? Explain your answer, and discuss the meaning of the word "accessible."

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free