Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a computer to produce a table and graph, like those in this section, for two interacting two-state paramagnets, each containing 100 elementary magnetic dipoles. Take a "unit" of energy to be the amount needed to flip a single dipole from the "up" state (parallel to the external field) to the "down" state (antiparallel). Suppose that the total number of units of energy, relative to the state with all dipoles pointing up, is80; this energy can be shared in any way between the two paramagnets. What is the most probable macrostate, and what is its probability? What is the least probable macrostate, and what is its probability?

Short Answer

Expert verified

The most likely macrostate is when the energy units are evenly distributed,qA=qB=40 , with a probability of 0.07513. The least likely state is when all the energy units are in partition BorA,qA=40 , or when qB=40, with a chance of 7.8726×10-20.

Step by step solution

01

Expression for overall multiplicity

The probability of PqAis,

PqA=ΩtotalΩoverall

The overall multiplicity is,

ΩoverallNoverall,qoverall=qoverall+Noverall-1qoverall

The total multiplicity is ,

Ωtotal=ΩAΩB

ΩA=qA+NA-1qA

ΩB=qB+NB-1qB

02

Calculation for total multiplicity

Multiplicity is,

Ωoverall=qoverall+Noverall-1!qoverall!Noverall-1!

qoverall=qA+qB=80

Noverall=NA+NB=200

So,

role="math" localid="1650306409339" Ωoverall=(80+200-1)!80!(200-1)!

=2.1225×1071

Multiplicity of Ais,

ΩA=qA+99qA=qA+99!qA!(99)!

Multiplicity of Bis,

ΩB=qB+99qB

Substitute qB=80-qA

so,

role="math" localid="1650306390399" ΩB=179-qA80-qA

=179-qA!80-qA!(99)!

Probability is,

PqA=ΩAΩBΩoverall

=12.1225×1071qA+99!qA!(99)!179-qA!80-qA!(99)!

03

Python program for creation of graph

04

Graph for probability and energy

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The mixing entropy formula derived in the previous problem actually applies to any ideal gas, and to some dense gases, liquids, and solids as well. For the denser systems, we have to assume that the two types of molecules are the same size and that molecules of different types interact with each other in the same way as molecules of the same type (same forces, etc.). Such a system is called an ideal mixture. Explain why, for an ideal mixture, the mixing entropy is given by

ΔSmixing=klnNNA

where Nis the total number of molecules and NAis the number of molecules of type A. Use Stirling's approximation to show that this expression is the same as the result of the previous problem when both Nand NAare large.

Use Stirling's approximation to find an approximate formula for the multiplicity of a two-state paramagnet. Simplify this formula in the limit NNto obtain ΩNe/NN. This result should look very similar to your answer to Problem 2.17; explain why these two systems, in the limits considered, are essentially the same.

A black hole is a region of space where gravity is so strong that nothing, not even light, can escape. Throwing something into a black hole is therefore an irreversible process, at least in the everyday sense of the word. In fact, it is irreversible in the thermodynamic sense as well: Adding mass to a black hole increases the black hole's entropy. It turns out that there's no way to tell (at least from outside) what kind of matter has gone into making a black hole. Therefore, the entropy of a black hole must be greater than the entropy of any conceivable type of matter that could have been used to create it. Knowing this, it's not hard to estimate the entropy of a black hole.
aUse dimensional analysis to show that a black hole of mass Mshould have a radius of order GM/c2, where Gis Newton's gravitational constant and cis the speed of light. Calculate the approximate radius of a one-solar-mass black holeM=2×1030kg .
bIn the spirit of Problem 2.36, explain why the entropy of a black hole, in fundamental units, should be of the order of the maximum number of particles that could have been used to make it.

cTo make a black hole out of the maximum possible number of particles, you should use particles with the lowest possible energy: long-wavelength photons (or other massless particles). But the wavelength can't be any longer than the size of the black hole. By setting the total energy of the photons equal toMc2 , estimate the maximum number of photons that could be used to make a black hole of mass M. Aside from a factor of 8π2, your result should agree with the exact formula for the entropy of a black hole, obtained* through a much more difficult calculation:

Sb.h.=8π2GM2hck

d Calculate the entropy of a one-solar-mass black hole, and comment on the result.

Show that during the quasistatic isothermal expansion of a monatomic ideal gas, the change in entropy is related to the heat input Qby the simple formula

s=QT

In the following chapter I'll prove that this formula is valid for any quasistatic process. Show, however, that it is not valid for the free expansion process described above.

Suppose you flip 20 fair coins.

(a) How many possible outcomes (microstates) are there?

(b) What is the probability of getting the sequence HTHHTTTHTHHHTHHHHTHT (in exactly that order)?

(c) What is the probability of getting 12 heads and 8 tails (in any order)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free