Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To quantify the clustering of alignments within an Ising magnet, we define a quantity called the correlation function, c(r). Take any two dipoles i and j, separated by a distance r, and compute the product of their states: sisj. This product is 1 if the dipoles are parallel and -1 if the dipoles are antiparallel. Now average this quantity over all pairs that are separated by a fixed distance r, to |obtain a measure of the tendency of dipoles to be "correlated" over this distance. Finally, to remove the effect of any overall magnetisation of the system, subtract off the square of the average s. Written as an equation, then, the correlation function is

c(r)=sisj¯-si¯2

where it is understood that the first term averages over all pairs at the fixed distance r. Technically, the averages should also be taken over all possible states of the system, but don't do this yet.

(a) Add a routine to the ising program to compute the correlation function for the current state of the lattice, averaging over all pairs separated either vertically or horizontally (but not diagonally) by r units of distance, where r varies from 1 to half the lattice size. Have the program execute this routine periodically and plot the results as a bar graph.

(b) Run this program at a variety of temperatures, above, below, and near the critical point. Use a lattice size of at least 20, preferably larger (especially near the critical point). Describe the behaviour of the correlation function at each temperature.

(c) Now add code to compute the average correlation function over the duration of a run. (However, it's best to let the system "equilibrate" to a typical state before you begin accumulating averages.) The correlation length is defined as the distance over which the correlation function decreases by a factor of e. Estimate the correlation length at each temperature, and plot graph of the correlation length vs.

Short Answer

Expert verified

Therefore, the codes and pictures are given.

Step by step solution

01

Given information

To quantify the clustering of alignments within an Ising magnet, we define a quantity called the correlation function, c(r). Take any two dipoles i and j, separated by a distance r, and compute the product of their states: sisj. This product is 1 if the dipoles are parallel and -1 if the dipoles are antiparallel. Now average this quantity over all pairs that are separated by a fixed distance r, to |obtain a measure of the tendency of dipoles to be "correlated" over this distance. Finally, to remove the effect of any overall magnetisation of the system, subtract off the square of the average s. Written as an equation, then, the correlation function is

c(r)=sisj¯-si¯2

where it is understood that the first term averages over all pairs at the fixed distance r. Technically, the averages should also be taken over all possible states of the system, but don't do this yet.

02

Explanation

a) Correlation function calculation routine:

03

Explanation

b)Correlation function on lattice 30x30 for different temperatures:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that the Lennard-Jones potential reaches its minimum value at r=r0, and that its value at this minimum is -u0. At what value of rdoes the potential equal zero?

Consider a gas of molecules whose interaction energy u(r)u is infinite for r<r0and negative for r>r0, with a minimum value of -u0. Suppose further that kTu0, so you can approximate the Boltzmann factor forr>r0using ex1+x. Show that under these conditions the second virial coefficient has the form B(T)=b-(a/kT), the same as what you found for a van der Waals gas in Problem 1.17. Write the van der Waals constants aand b in terms of r0and u(r), and discuss the results briefly.

Draw all the diagrams, connected or disconnected, representing terms in the configuration integral with four factors of fij. You should find 11 diagrams in total, of which five are connected.

Starting from the partition function, calculate the average energy of the one-dimensional Ising model, to verify equation 8.44. Sketch the average energy as a function of temperature.

In this problem you will use the mean field approximation to analyse the behaviour of the Ising model near the critical point.

(a) Prove that, when x1,tanhxx-13x3

(b) Use the result of part (a) to find an expression for the magnetisation of the Ising model, in the mean field approximation, when T is very close to the critical temperature. You should find MTc-Tβ¯,whereβ(not to be confused with 1/kT) is a critical exponent, analogous to the f defined for a fluid in Problem 5.55. Onsager's exact solution shows that β=1/8in two dimensions, while experiments and more sophisticated approximations show that β1/3in three dimensions. The mean field approximation, however, predicts a larger value.

(c) The magnetic susceptibility χis defined as χ(M/B)T. The behaviour of this quantity near the critical point is conventionally written as χT-Tc-γ , where y is another critical exponent. Find the value of in the mean field approximation, and show that it does not depend on whether T is slightly above or slightly below Te. (The exact value of y in two dimensions turns out to be 7/4, while in three dimensions γ1.24.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free