Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Ising model can be used to simulate other systems besides ferromagnets; examples include anti ferromagnets, binary alloys, and even fluids. The Ising model of a fluid is called a lattice gas. We imagine that space is divided into a lattice of sites, each of which can be either occupied by a gas molecule or unoccupied. The system has no kinetic energy, and the only potential energy comes from interactions of molecules on adjacent sites. Specifically, there is a contribution of -u0to the energy for each pair of neighbouring sites that are both occupied.

(a) Write down a formula for the grand partition function for this system, as a function of u0, T, and p.

(b) Rearrange your formula to show that it is identical, up to a multiplicative factor that does not depend on the state of the system, to the ordinary partition function for an Ising ferromagnet in the presence of an external magnetic field B, provided that you make the replacements u04ϵand μ2μBB-8ϵ. (Note that is the chemical potential of the gas while uB is the magnetic moment of a dipole in the magnet.)

(c) Discuss the implications. Which states of the magnet correspond to low density states of the lattice gas? Which states of the magnet correspond to high-density states in which the gas has condensed into a liquid? What shape does this model predict for the liquid-gas phase boundary in the P-T plane?

Short Answer

Expert verified

Therefore,

ZN=exp-βH1·expβμ+2u0NL

Step by step solution

01

Given information

The Ising model can be used to simulate other systems besides ferromagnets; examples include anti ferromagnets, binary alloys, and even fluids. The Ising model of a fluid is called a lattice gas. We imagine that space is divided into a lattice of sites, each of which can be either occupied by a gas molecule or unoccupied. The system has no kinetic energy, and the only potential energy comes from interactions of molecules on adjacent sites. Specifically, there is a contribution of -u0to the energy for each pair of neighbouring sites that are both occupied.

02

Explanation

Hamiltonian of this system is:

H=-u0i,jninj

Hamiltonian of in the Ising model is:

HI=-ϵi,jsisj-2μ0Bs

Because there can only be one particle in a single lattice site, ni =0,1, and it can have spin s1 = -1 or s1 = 1, we can write following relation for the occupation of a lattice site and the spin:

si=2ni-1ni=si+12

Plugging this expression into the first Hamiltonian, we get:

H=-u0i,jsi+12·sj+12=-u04i,jsi+1sj+1=-u04i,jsisj+si+sj+1=-u04i,jsisj-u0·ξ2si+const

ξis the number of nearest neighbours, and for a square lattice all sites have the same number of neighbours: ξ=4

By comparison with the Hamiltonian of the Ising model, we can see thatϵ=u0/4oru0=4ϵ

Grand canonical Hamiltonian is:

H-μN=-u04i,jsisj-2u0si+const.-μsiH-μN=-u04i,jsisj-μ+2u0si+const

Where, μis chemical potential

03

Explanation

Now we can see that we will get the Hamiltonian of the Ising model if we Use substitutions: u0=4ϵand2μ0B=μ+8ϵ

Rewriting the equation:

H-μN=H1-μ+2u0NL

Where NL is the total number of lattice sites

Grand partition function is:

ZN=exp[-β(H-μN)]

Canonical partition function of the Ising model is:Z1=exp-βH1. So these two partition functions are related:

ZN=exp[-β(H-μN)]ZN=Z1·expβμ+2u0NL

If the relation between occupation of the lattice site and the spin is:

si=2ni-1

We can see that for ni = 0 (empty site) we will have s1= -1. So, magnetic state of si = -1 will correspond to the low density of lattice gas.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a gas of "hard spheres," which do not interact at all unless their separation distance is less than r0, in which case their interaction energy is infinite. Sketch the Mayer f-function for this gas, and compute the second virial coefficient. Discuss the result briefly.

In this section I've formulated the cluster expansion for a gas with a fixed number of particles, using the "canonical" formalism of Chapter 6. A somewhat cleaner approach, however, is to use the "grand canonical" formalism introduced in Section 7.1, in which we allow the system to exchange particles with a much larger reservoir.

(a) Write down a formula for the grand partition function (Z) of a weakly interacting gas in thermal and diffusive equilibrium with a reservoir at fixed T andµ. Express Z as a sum over all possible particle numbers N, with each term involving the ordinary partition function Z(N).

(b) Use equations 8.6 and 8.20 to express Z(N) as a sum of diagrams, then carry out the sum over N, diagram by diagram. Express the result as a sum of similar diagrams, but with a new rule 1 that associates the expression (>./vQ) J d3ri with each dot, where >. = e13µ,. Now, with the awkward factors of N(N - 1) · · · taken care of, you should find that the sum of all diagrams organizes itself into exponential form, resulting in the formula

Note that the exponent contains all connected diagrams, including those that can be disconnected by removal of a single line.

(c) Using the properties of the grand partition function (see Problem 7.7), find diagrammatic expressions for the average number of particles and the pressure of this gas.

(d) Keeping only the first diagram in each sum, express N(µ) and P(µ) in terms of an integral of the Mayer /-function. Eliminate µ to obtain the same result for the pressure (and the second virial coefficient) as derived in the text.

(e) Repeat part (d) keeping the three-dot diagrams as well, to obtain an expression for the third virial coefficient in terms of an integral of /-functions. You should find that the A-shaped diagram cancels, leaving only the triangle diagram to contribute to C(T).

Use a computer to plot s¯ as a function of kT/ε, as predicted by mean field theory, for a two-dimensional Ising model (with a square lattice).

Problem 8.8. Show that the nthvirial coefficient depends on the diagrams in equation 8.23 that have ndots. Write the third virial coefficient, C(T), in terms of an integral of f-functions. Why it would be difficult to carry out this integral?

In this problem you will use the mean field approximation to analyse the behaviour of the Ising model near the critical point.

(a) Prove that, when x1,tanhxx-13x3

(b) Use the result of part (a) to find an expression for the magnetisation of the Ising model, in the mean field approximation, when T is very close to the critical temperature. You should find MTc-Tβ¯,whereβ(not to be confused with 1/kT) is a critical exponent, analogous to the f defined for a fluid in Problem 5.55. Onsager's exact solution shows that β=1/8in two dimensions, while experiments and more sophisticated approximations show that β1/3in three dimensions. The mean field approximation, however, predicts a larger value.

(c) The magnetic susceptibility χis defined as χ(M/B)T. The behaviour of this quantity near the critical point is conventionally written as χT-Tc-γ , where y is another critical exponent. Find the value of in the mean field approximation, and show that it does not depend on whether T is slightly above or slightly below Te. (The exact value of y in two dimensions turns out to be 7/4, while in three dimensions γ1.24.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free