Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a computer to plot s¯ as a function of kT/ε, as predicted by mean field theory, for a two-dimensional Ising model (with a square lattice).

Short Answer

Expert verified

Therefore,

s¯=tanh4s¯t

Step by step solution

01

Given information

Plot s¯as a function of kT/ε, as predicted by mean field theory, for a two-dimensional Ising model (with a square lattice).

02

Explanation

The average spin alignment is given by:

s¯=tanh(βϵns¯)

The number of nearest is given by:

n=2Inonedimension4Intwodimensions(squarelattice)6Inthreedimensions(simplecubiclattice)8Inthreedimensions(bodycenteredcubiclattice)12Inthreedimensions(facecenteredcubiclattice)

Consider a two-dimensional lsing model with n = 4, which you can plug into the equation above to get:

s¯=tanh(4βϵs¯)

Substitute β=1/kTcand t=kTc/ϵ

s¯=tanh4s¯t

First, we must solve this equation numerically because it is difficult to solve. To do so, we simply build a list of t values ranging from O01 to 5.0, and then we create a loop to solve this equation numerically for each value of t. I used Python to achieve this, and the code is shown below.

The graph is:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider an Ising model of just two elementary dipoles, whose mutual interaction energy is ±ϵ. Enumerate the states of this system and write down their Boltzmann factors. Calculate the partition function. Find the probabilities of finding the dipoles parallel and antiparallel, and plot these probabilities as a function of kT/ϵ. Also calculate and plot the average energy of the system. At what temperatures are you more likely to find both dipoles pointing up than to find one up and one down?

Modify the ising program to compute the average energy of the system over all iterations. To do this, first add code to the initialise subroutine compute the initial energy of the lattice; then, whenever a dipole is flipped, change the energy variable by the appropriate amount. When computing the average energy, be sure to average over all iterations, not just those iterations in which a dipole is actually flipped (why?). Run the program for a 5 x 5 lattice for T values from 4 down to l in reasonably small intervals, then plot the average energy as a function of T. Also plot the heat capacity. Use at least 1000 iterations per dipole for each run, preferably more. If your computer is fast enough, repeat for a 10x 10 lattice and for a 20 x 20 lattice. Discuss the results. (Hint: Rather than starting over at each temperature with a random initial state, you can save time by starting with the final state generated at the previous, nearby temperature. For the larger lattices you may wish to save time by considering only a smaller temperature interval, perhaps from 3 down to 1.5.)

Keeping only the first two diagrams in equation 8.23, and approximating NN-1N-2..... expand the exponential in a power series through the third power. Multiply each term out, and show that all the numerical coefficients give precisely the correct symmetry factors for the disconnected diagrams.

At T = 0, equation 8.50 says that s¯=1. Work out the first temperature-dependent correction to this value, in the limit βn1. Compare to the low-temperature behaviour of a real ferromagnet, treated in Problem 7.64.

Use the cluster expansion to write the total energy of a monatomic nonideal gas in terms of a sum of diagrams. Keeping only the first diagram, show that the energy is approximatelyU32NkT+N2V·2π0r2u(r)e-βu(r)drUse a computer to evaluate this integral numerically, as a function of T, for the Lennard-Jones potential. Plot the temperature-dependent part of the correction term, and explain the shape of the graph physically. Discuss the correction to the heat capacity at constant volume, and compute this correction numerically for argon at room temperature and atmospheric pressure.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free