Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Starting from the partition function, calculate the average energy of the one-dimensional Ising model, to verify equation 8.44. Sketch the average energy as a function of temperature.

Short Answer

Expert verified

The average energy =-Nεtanhβε

Sketch for the average energy as function of temperature

Step by step solution

01

Step 1. Given information

The partition function of the system:

Z=se-εi/r

Z=se-εi/r

02

Step 2. To find the expression for average energy 

We substituteβfor1/τ

Z=se-εnβ

The average energy of the system is,

U=ε

=1Zsεse-βcs

=-1Zεsse-βss

Substituting the value of dZdβ=εsse-βcs

U=-1ZdZdβ

=-β(lnZ)

The expression for partition function for final sum of Ndipole is,

Z=(2coshβε)

lnZ=ln(2coshβε)

U=-1ZdZdβ

=-β(ln(2coshβε))

=1(2coshβε)((2sinhβε))α

=-Nεtanhβε

The average energy ==-Nεtanhβε

03

Step 3. Sketch for the following function

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use a computer to plot s¯ as a function of kT/ε, as predicted by mean field theory, for a two-dimensional Ising model (with a square lattice).

The Ising model can be used to simulate other systems besides ferromagnets; examples include anti ferromagnets, binary alloys, and even fluids. The Ising model of a fluid is called a lattice gas. We imagine that space is divided into a lattice of sites, each of which can be either occupied by a gas molecule or unoccupied. The system has no kinetic energy, and the only potential energy comes from interactions of molecules on adjacent sites. Specifically, there is a contribution of -u0to the energy for each pair of neighbouring sites that are both occupied.

(a) Write down a formula for the grand partition function for this system, as a function of u0, T, and p.

(b) Rearrange your formula to show that it is identical, up to a multiplicative factor that does not depend on the state of the system, to the ordinary partition function for an Ising ferromagnet in the presence of an external magnetic field B, provided that you make the replacements u04ϵand μ2μBB-8ϵ. (Note that is the chemical potential of the gas while uB is the magnetic moment of a dipole in the magnet.)

(c) Discuss the implications. Which states of the magnet correspond to low density states of the lattice gas? Which states of the magnet correspond to high-density states in which the gas has condensed into a liquid? What shape does this model predict for the liquid-gas phase boundary in the P-T plane?

Consider a gas of molecules whose interaction energy u(r)u is infinite for r<r0and negative for r>r0, with a minimum value of -u0. Suppose further that kTu0, so you can approximate the Boltzmann factor forr>r0using ex1+x. Show that under these conditions the second virial coefficient has the form B(T)=b-(a/kT), the same as what you found for a van der Waals gas in Problem 1.17. Write the van der Waals constants aand b in terms of r0and u(r), and discuss the results briefly.

Consider an Ising model of 100 elementary dipoles. Suppose you wish to calculate the partition function for this system, using a computer that can compute one billion terms of the partition function per second. How long must you wait for the answer?

Problem 8.13. Use the cluster expansion to write the total energy of a monatomic nonideal gas in terms of a sum of diagrams. Keeping only the first diagram, show that the energy is approximately
U32NkT+N2V·2π0r2u(r)e-βu(r)dr
Use a computer to evaluate this integral numerically, as a function of T, for the Lennard-Jones potential. Plot the temperature-dependent part of the correction term, and explain the shape of the graph physically. Discuss the correction to the heat capacity at constant volume, and compute this correction numerically for argon at room temperature and atmospheric pressure.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free