Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Compute the quantum volume for an N2molecule at room temperature, and argue that a gas of such molecules at atmospheric pressure can be

treated using Boltzmann statistics. At about what temperature would quantum statistics become relevant for this system (keeping the density constant and pretending that the gas does not liquefy)?

Short Answer

Expert verified

The quantum volume for an N2molecule at room temperature is 6.9×10-33m3. The temperature of system at which quantum statistics become relevant is 5.681K.

Step by step solution

01

Step 1. Formula quantum volume

Formula for quantum volume is:

νQ=h2πmkT3

where,Tis temperature,role="math" localid="1647248715772" mis molecule mass,his Planck's constant,kis Boltzmann constant.

02

Step 2. Calculation quantum volume

Mass of N2 is calculated as:

role="math" localid="1647249031293" m=(28u)1.67×10-27kg1u=46.48×10-27kg

Substitute variables in quantum volume formula:

νQ=6.63×10-34J·s2π(46.48×10-27kg)(1.38×10-23J/K)(300K)3=6.63×10-34347.91×10-503=6.9×10-33m3

So, quantum volume ofN2molecule is6.9×10-33m3.

03

Step 3. Calculation ideal gas equation

Ideal gas equation is PV=NkT

So, VN=kTP

Substitute Pressure,P=1.013×105N/m2, Temperature,T=300K.

role="math" localid="1647253225593" VN=(1.38×10-23J/K)(300K)1.013×105N/m2=4×10-26m3

04

Step 4. Calculation temperature

In quantum statistics, VNνQ

kTPh2πmkT3T.T32h3(2πmK)32×PkT52Ph3(2πm)32k52T1kP2h6(2πm)315

Substitute the values of variables in above equation:

T11.38×10-23J/K(1.013×105N/m2)2(6.63×10-34J·s)6(2π(28×1.67×10-27kg))315T=5.681K

So, temperature of the system is5.681K.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At the surface of the sun, the temperature is approximately 5800 K.

(a) How much energy is contained in the electromagnetic radiation filling a cubic meter of space at the sun's surface?

(b) Sketch the spectrum of this radiation as a function of photon energy. Mark the region of the spectrum that corresponds to visible wavelengths, between 400 nm and 700 nm.

(c) What fraction of the energy is in the visible portion of the spectrum? (Hint: Do the integral numerically.)

In addition to the cosmic background radiation of photons, the universe is thought to be permeated with a background radiation of neutrinos (v) and antineutrinos (v-), currently at an effective temperature of 1.95 K. There are three species of neutrinos, each of which has an antiparticle, with only one allowed polarisation state for each particle or antiparticle. For parts (a) through (c) below, assume that all three species are exactly massless

(a) It is reasonable to assume that for each species, the concentration of neutrinos equals the concentration of antineutrinos, so that their chemical potentials are equal: μν=μν¯. Furthermore, neutrinos and antineutrinos can be produced and annihilated in pairs by the reaction

ν+ν¯2γ

(where y is a photon). Assuming that this reaction is at equilibrium (as it would have been in the very early universe), prove that u =0 for both the neutrinos and the antineutrinos.

(b) If neutrinos are massless, they must be highly relativistic. They are also fermions: They obey the exclusion principle. Use these facts to derive a formula for the total energy density (energy per unit volume) of the neutrino-antineutrino background radiation. differences between this "neutrino gas" and a photon gas. Antiparticles still have positive energy, so to include the antineutrinos all you need is a factor of 2. To account for the three species, just multiply by 3.) To evaluate the final integral, first change to a dimensionless variable and then use a computer or look it up in a table or consult Appendix B. (Hint: There are very few

(c) Derive a formula for the number of neutrinos per unit volume in the neutrino background radiation. Evaluate your result numerically for the present neutrino temperature of 1.95 K.

d) It is possible that neutrinos have very small, but nonzero, masses. This wouldn't have affected the production of neutrinos in the early universe, when me would have been negligible compared to typical thermal energies. But today, the total mass of all the background neutrinos could be significant. Suppose, then, that just one of the three species of neutrinos (and the corresponding antineutrino) has a nonzero mass m. What would mc2 have to be (in eV), in order for the total mass of neutrinos in the universe to be comparable to the total mass of ordinary matter?

Each atom in a chunk of copper contributes one conduction electron. Look up the density and atomic mass of copper, and calculate the Fermi energy, the Fermi temperature, the degeneracy pressure, and the contribution of the degeneracy pressure to the bulk modulus. Is room temperature sufficiently low to treat this system as a degenerate electron gas?

Calculate the condensate temperature for liquid helium-4, pretending that liquid is a gas of noninteracting atoms. Compare to the observed temperature of the superfluid transition, 2.17K. ( the density of liquid helium-4 is 0.145g/cm3)

Consider a two-dimensional solid, such as a stretched drumhead or a layer of mica or graphite. Find an expression (in terms of an integral) for the thermal energy of a square chunk of this material of area , and evaluate the result approximately for very low and very high temperatures. Also, find an expression for the heat capacity, and use a computer or a calculator to plot the heat capacity as a function of temperature. Assume that the material can only vibrate perpendicular to its own plane, i.e., that there is only one "polarization."

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free