Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose you have a "box" in which each particle may occupy any of 10single-particle states. For simplicity, assume that each of these states has energy zero.

(a) What is the partition function of this system if the box contains only one particle?

(b) What is the partition function of this system if the box contains two distinguishable particles?

(c) What is the partition function if the box contains two identical bosons?

(d) What is the partition function if the box contains two identical fermions?

(e) What would be the partition function of this system according to equation 7.16?

(f) What is the probability of finding both particles in the same single particle state, for the three cases of distinguishable particles, identical bosom, and identical fermions?

Short Answer

Expert verified

(a) Partition function of system with box having only one particle is 10.

(b) Partition function of the system if the box contains two distinguishable particles is 100.

(c) Partition function if the box contains two identical bosons is 55.

(d) Partition function if the box contains two identical fermions is 45.

(e) Partition function of this system according to equation 7.16 is 50.

(f) Probability of finding both particles in the same single particle state, for the three cases of distinguishable particles, identical bosom, and identical fermions are10%,18%and0%.

Step by step solution

01

Step 1. Calculation one particle

Each particle can have any 10states each with zero energy.

So, E(ri)=0for1ri10

Formula for particle function with box having one particle:

Zl=ie-βE(ri)

where, β=1kTβ=1kT

We substitute E(ri)=0

localid="1647243851142" Zl=110eβ(0)=1101=10

So, Partition function of system with box having only one particle is10.

02

Step 2. Calculation two particles

For two distinguishable particles partition function is:

Z=Zl2

Substitute Zl=10

role="math" localid="1647244178631" Z=(10)2=100

So, the partition function of the system if the box contains two distinguishable particles is100.

03

Step 3. Calculation bosons

To put two identical bosons in same single particle state the possibility is 10.

So, to put two identical bosons in different single particle state the possibility is calculated as:

C210=10!2!8!=45

So, total possible states are:

Z=10+45=55

Hence, the partition function if the box contains two identical bosons is55.

04

Step 4. Calculation fermions

There is no possibility to put two identical fermions in same single particle state.

For different single particle state possibilities are calculated by:

C210=10!2!8!=45

So, the partition function if the box contains two identical fermions is45.

05

Step 5. Calculation indistinguishable particles 

Partition function for Nindistinguishable and non interacting particles is given by,

Z=ZlNN!

Substitute Zl=10and N=2

Z=1022!=50

So, the partition function of the system when box have indistinguishable particles is50.

06

Step 6. Calculation probability

For distinguishable particles number of accessible states are Z=100.

For both particles in same single particle state, accessible states are 10.

So, probability of finding both particle in same single particle state is:

P=10100=10%

So, probability for distinguishable particles is role="math" localid="1647245922911" 10%.

For identical bosons number of accessible states are Z=55.

For both bosons in same single particle state, accessible states are 10.

So, probability of finding both bosons in same single particle state is:

P=1055=18%

So, probability for identical bosons is 18%.

For identical fermions number of accessible states are Z=45.

For both fermions in same single particle state, accessible states is 0.

So, probability of finding both fermions in same single particle state is:

P=045=0%

So, probability for identical fermions is 0%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A white dwarf star (see Figure 7.12) is essentially a degenerate electron gas, with a bunch of nuclei mixed in to balance the charge and to provide the gravitational attraction that holds the star together. In this problem you will derive a relation between the mass and the radius of a white dwarf star, modeling the star as a uniform-density sphere. White dwarf stars tend to be extremely hot by our standards; nevertheless, it is an excellent approximation in this problem to set T=0.

(a) Use dimensional analysis to argue that the gravitational potential energy of a uniform-density sphere (mass M, radius R) must equal

Ugrav=-(constant)GM2R

where (constant) is some numerical constant. Be sure to explain the minus sign. The constant turns out to equal 3/5; you can derive it by calculating the (negative) work needed to assemble the sphere, shell by shell, from the inside out.

(b) Assuming that the star contains one proton and one neutron for each electron, and that the electrons are nonrelativistic, show that the total (kinetic) energy of the degenerate electrons equals

Ukinetic=(0.0086)h2M53memp53R2

Figure 7.12. The double star system Sirius A and B. Sirius A (greatly overexposed in the photo) is the brightest star in our night sky. Its companion, Sirius B, is hotter but very faint, indicating that it must be extremely small-a white dwarf. From the orbital motion of the pair we know that Sirius B has about the same mass as our sun. (UCO /Lick Observatory photo.)

( c) The equilibrium radius of the white dwarf is that which minimizes the total energy Ugravity+Ukinetic· Sketch the total energy as a function of R, and find a formula for the equilibrium radius in terms of the mass. As the mass increases, does the radius increase or decrease? Does this make sense?

( d) Evaluate the equilibrium radius for M=2×1030kg, the mass of the sun. Also evaluate the density. How does the density compare to that of water?

( e) Calculate the Fermi energy and the Fermi temperature, for the case considered in part (d). Discuss whether the approximation T = 0 is valid.

(f) Suppose instead that the electrons in the white dwarf star are highly relativistic. Using the result of the previous problem, show that the total kinetic energy of the electrons is now proportional to 1 / R instead of 1R2• Argue that there is no stable equilibrium radius for such a star.

(g) The transition from the nonrelativistic regime to the ultra relativistic regime occurs approximately where the average kinetic energy of an electron is equal to its rest energy, mc2Is the nonrelativistic approximation valid for a one-solar-mass white dwarf? Above what mass would you expect a white dwarf to become relativistic and hence unstable?

For a brief time in the early universe, the temperature was hot enough to produce large numbers of electron-positron pairs. These pairs then constituted a third type of "background radiation," in addition to the photons and neutrinos (see Figure 7.21). Like neutrinos, electrons and positrons are fermions. Unlike neutrinos, electrons and positrons are known to be massive (ea.ch with the same mass), and each has two independent polarization states. During the time period of interest, the densities of electrons and positrons were approximately equal, so it is a good approximation to set the chemical potentials equal to zero as in Figure 7.21. When the temperature was greater than the electron mass times c2k, the universe was filled with three types of radiation: electrons and positrons (solid arrows); neutrinos (dashed); and photons (wavy). Bathed in this radiation were a few protons and neutrons, roughly one for every billion radiation particles. the previous problem. Recall from special relativity that the energy of a massive particle is ϵ=(pc)2+mc22.

(a) Show that the energy density of electrons and positrons at temperature Tis given by

u(T)=0x2x2+mc2/kT2ex2+mc2/kT2+1dx;whereu(T)=0x2x2+mc2/kT2ex2+mc2/kT2+1dx

(b) Show that u(T)goes to zero when kTmc2, and explain why this is a

reasonable result.

( c) Evaluate u(T)in the limit kTmc2, and compare to the result of the

the previous problem for the neutrino radiation.

(d) Use a computer to calculate and plot u(T)at intermediate temperatures.

(e) Use the method of Problem 7.46, part (d), to show that the free energy

density of the electron-positron radiation is

FV=-16π(kT)4(hc)3f(T);wheref(T)=0x2ln1+e-x2+mc2/kT2dx

Evaluate f(T)in both limits, and use a computer to calculate and plot f(T)at intermediate

temperatures.

(f) Write the entropy of the electron-positron radiation in terms of the functions

uTand f(T). Evaluate the entropy explicitly in the high-T limit.

Explain in some detail why the three graphs in Figure 7.28 all intercept the vertical axis in about the same place, whereas their slopes differ considerably.

In Problem 7.28you found the density of states and the chemical potential for a two-dimensional Fermi gas. Calculate the heat capacity of this gas in the limit role="math" localid="1650099524353" kTεF· Also show that the heat capacity has the expected behavior when kTεF. Sketch the heat capacity as a function of temperature.

The tungsten filament of an incandescent light bulb has a temperature of approximately 3000K. The emissivity of tungsten is approximately 13, and you may assume that it is independent of wavelength.

(a) If the bulb gives off a total of 100watts, what is the surface area of its filament in square millimetres?

(b) At what value of the photon energy does the peak in the bulb's spectrum occur? What is the wavelength corresponding to this photon energy?

(c) Sketch (or use a computer to plot) the spectrum of light given off by the filament. Indicate the region on the graph that corresponds to visible wavelengths, between400and700nm.

(d) Calculate the fraction of the bulb's energy that comes out as visible light. (Do the integral numerically on a calculator or computer.) Check your result qualitatively from the graph of part (c).

( e) To increase the efficiency of an incandescent bulb, would you want to raise or lower the temperature? (Some incandescent bulbs do attain slightly higher efficiency by using a different temperature.)

(f) Estimate the maximum possible efficiency (i.e., fraction of energy in the visible spectrum) of an incandescent bulb, and the corresponding filament temperature. Neglect the fact that tungsten melts at 3695K.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free