Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Starting from the formula for CV derived in Problem 7.70(b), calculate the entropy, Helmholtz free energy, and pressure of a Bose gas for T<Tc. Notice that the pressure is independent of volume; how can this be the case?

Short Answer

Expert verified

Entropy of Bose gas , S=3.35372πmh232V·KBT32KB

Helmholtz free energy, F=-1.34152πmh212V·KBT52

Pressure of a Bose gas,P=1.34152πmh232KBT52

Step by step solution

01

Step 1. Given information

If T<Tc,

CV=5.03062πmh232VKBT32KB

U=2π2πmh2V·KBT52(1.7833)

=2.01222πmh232V·KBT52

Here,

h= Planck's constant,

KB= Boltzmann's constant,

V= volume of the box,

T= temperature,

m= mass of the particle,

02

Step 2. To find entropy 

We have,

S=0T5.03062πmh232V·KB52T'32T'dT'

=5.03062πmh232V·KB520TT'12dT'

=5.03062πmh232V·KB52T32320T

=5.0306·23·2πmh232V·KBT32KB

=5.0306·23·2πmh232V·KBT32KB

S=3.35372πmh232V·KBT32KB

03

Step 3. To find the Helmholtz energy 

We have,

F=U-TS

=2.01222πmh232V·KBT52-T5.03056×232πmh232V·KBT32KB

=2πmh232V·KBT52[2.0122-3.3537]

=-1.34152πmKBTh232V·KBT

F=-1.34152πmh232V·KBT52

04

Step 4. To find the pressure of a Bose gas

We have,

P=-FVN,T

=-V-1.34152πmh232V·KBT52=1.34152πmh232KBT52(1)P=1.34152πmh232KBT52
05

Step 5. Examining the expression of pressure

We get to know that pressure is independent of volume and a function of temperature 'T' only as for condensing gas.

Further reduction in the volume would condense more particles in ground state in the limitT<Tc

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The previous two problems dealt with pure semiconductors, also called intrinsic semiconductors. Useful semiconductor devices are instead made from doped semiconductors, which contain substantial numbers of impurity atoms. One example of a doped semiconductor was treated in Problem 7.5. Let us now consider that system again. (Note that in Problem 7.5 we measured all energies relative to the bottom of the conduction band, Ee. We also neglected the distinction between g0and g0c; this simplification happens to be ok for conduction electrons in silicon.)

(a) Calculate and plot the chemical potential as afunction of temperature, for silicon doped with 1017phosphorus atoms per cm3(as in Problem 7.5). Continue to assume that the conduction electrons can be treated as an ordinary ideal gas.

(b) Discuss whether it is legitimate to assume for this system that the conduction electrons can be treated asan ordinary ideal gas, as opposed to a Fermi gas. Give some numerical examples.

(c)Estimate the temperature at which the number of valence electrons excitedto the conduction band would become comparable to the number ofconduction electrons from donor impurities. Which source of conductionelectrons is more important at room temperature?

Consider a system consisting of a single impurity atom/ion in a semiconductor. Suppose that the impurity atom has one "extra" electron compared to the neighboring atoms, as would a phosphorus atom occupying a lattice site in a silicon crystal. The extra electron is then easily removed, leaving behind a positively charged ion. The ionized electron is called a conduction electron, because it is free to move through the material; the impurity atom is called a donor, because it can "donate" a conduction electron. This system is analogous to the hydrogen atom considered in the previous two problems except that the ionization energy is much less, mainly due to the screening of the ionic charge by the dielectric behavior of the medium.

Near the cells where oxygen is used, its chemical potential is significantly lower than near the lungs. Even though there is no gaseous oxygen near these cells, it is customary to express the abundance of oxygen in terms of the partial pressure of gaseous oxygen that would be in equilibrium with the blood. Using the independent-site model just presented, with only oxygen present, calculate and plot the fraction of occupied heme sites as a function of the partial pressure of oxygen. This curve is called the Langmuir adsorption isotherm ("isotherm" because it's for a fixed temperature). Experiments show that adsorption by myosin follows the shape of this curve quite accurately.

The heat capacity of liquid H4ebelow 0.6Kis proportional to T3, with the measured valueCV/Nk=(T/4.67K)3. This behavior suggests that the dominant excitations at low temperature are long-wavelength photons. The only important difference between photons in a liquid and photons in a solid is that a liquid cannot transmit transversely polarized waves-sound waves must be longitudinal. The speed of sound in liquid He4is 238m/s, and the density is 0.145g/cm3. From these numbers, calculate the photon contribution to the heat capacity ofHe4in the low-temperature limit, and compare to the measured value.

Consider any two internal states, s1 and s2, of an atom. Let s2 be the higher-energy state, so that Es2-Es1=ϵ for some positive constant. If the atom is currently in state s2, then there is a certain probability per unit time for it to spontaneously decay down to state s1, emitting a photon with energy e. This probability per unit time is called the Einstein A coefficient:

A = probability of spontaneous decay per unit time.

On the other hand, if the atom is currently in state s1 and we shine light on it with frequency f=ϵ/h, then there is a chance that it will absorb photon, jumping into state s2. The probability for this to occur is proportional not only to the amount of time elapsed but also to the intensity of the light, or more precisely, the energy density of the light per unit frequency, u(f). (This is the function which, when integrated over any frequency interval, gives the energy per unit volume within that frequency interval. For our atomic transition, all that matters is the value of u(f)atf=ϵ/h) The probability of absorbing a photon, per unit time per unit intensity, is called the Einstein B coefficient:

B=probability of absorption per unit timeu(f)

Finally, it is also possible for the atom to make a stimulated transition from s2down to s1, again with a probability that is proportional to the intensity of light at frequency f. (Stimulated emission is the fundamental mechanism of the laser: Light Amplification by Stimulated Emission of Radiation.) Thus we define a third coefficient, B, that is analogous to B:

B'=probability of stimulated emission per unit timeu(f)

As Einstein showed in 1917, knowing any one of these three coefficients is as good as knowing them all.

(a) Imagine a collection of many of these atoms, such that N1 of them are in state s1 and N2 are in state s2. Write down a formula for dN1/dt in terms of A, B, B', N1, N2, and u(f).

(b) Einstein's trick is to imagine that these atoms are bathed in thermal radiation, so that u(f) is the Planck spectral function. At equilibrium, N1and N2 should be constant in time, with their ratio given by a simple Boltzmann factor. Show, then, that the coefficients must be related by

B'=BandAB=8πhf3c3

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free