Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The heat capacity of liquid H4ebelow 0.6Kis proportional to T3, with the measured valueCV/Nk=(T/4.67K)3. This behavior suggests that the dominant excitations at low temperature are long-wavelength photons. The only important difference between photons in a liquid and photons in a solid is that a liquid cannot transmit transversely polarized waves-sound waves must be longitudinal. The speed of sound in liquid He4is 238m/s, and the density is 0.145g/cm3. From these numbers, calculate the photon contribution to the heat capacity ofHe4in the low-temperature limit, and compare to the measured value.

Short Answer

Expert verified

The photon contribution to the heat capacity of He4in the low-temperature limit is given as C1Nk=T4.64K3

Step by step solution

01

Step 1. Given information 

The Debye temperature is given as

TD=hcs2k6NπV13

Here, his the Planck's constant, csis the speed of the sound in the liquid, Nis the Avogadro number, V is the volume, and kis the Boltzmann's constant.

02

Step 2. Calculating the value of volume V first,

The density of the liquid He4is,ρ=mV

Here, mis the mass of the liquid He4.

Solving the equation for V, V=mρ

Substituting value 4gformand 0.145g/cm3for ρ.

role="math" localid="1647513805305" V=4g0.145g/cm3V=27.6cm31m3106cm3V=2.76×10-5m3

03

Step 3. Substituting all the values of h,k,cs,V,N in the Debye temperature formula

Where,

h=6.626×10-34J·scs=238m/sk=1.38×10-23J/KN=6.02×1023V=2.76×10-5m3

so, we get the TD

TD=6.626×10-34J·s(238m/s)21.38×10-23J/K66.02×1023π2.76×10-5m31/3

TD=19.8K

04

Step 4. Now finding the energies of the allowed modes .

So, the energies of the allowed modes is given as

U=nsnynrεn¯PI(ε)

Here, n¯P(ε)is the average Planck's distribution. The number of polarization state tor the lıquid is only 1for the triplet nx,ny,nz.

As, the heat capacity in the low temperature limit for the liquid is equal to 13times of the heat capacity at the lower temperature for the solid as in the formula.

CV=1312π45TTD3Nk

CVNk=4π45TTD3

CVNk=T54π41/319.8K3

=T4.64K3.

Hence,The value of the photon contribution to the heat capacity ofHe4isCVNk=T4.64K3.

05

Step 5. The comparison of the measured values are 

The measured value of CVNkfor the heat capacity of He4is T4.67K3. So, the value found in the above is approximately similar with the measured value of the heat capacity for liquidHe4.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In this problem you will model helium-3 as a non-interacting Fermi gas. Although He3liquefies at low temperatures, the liquid has an unusually low density and behaves in many ways like a gas because the forces between the atoms are so weak. Helium-3 atoms are spin-1/2 fermions, because of the unpaired neutron in the nucleus.

(a) Pretending that liquid 3He is a non-interacting Fermi gas, calculate the Fermi energy and the Fermi temperature. The molar volume (at low pressures) is 37cm3

(b)Calculate the heat capacity for T<<Tf, and compare to the experimental result CV=(2.8K-1)NkT(in the low-temperature limit). (Don't expect perfect agreement.)

(c)The entropy of solid H3ebelow 1 K is almost entirely due to its multiplicity of nuclear spin alignments. Sketch a graph S vs. T for liquid and solid H3eat low temperature, and estimate the temperature at which the liquid and solid have the same entropy. Discuss the shape of the solid-liquid phase boundary shown in Figure 5.13.


Fill in the steps to derive equations 7.112and7.117.

In addition to the cosmic background radiation of photons, the universe is thought to be permeated with a background radiation of neutrinos (v) and antineutrinos (v-), currently at an effective temperature of 1.95 K. There are three species of neutrinos, each of which has an antiparticle, with only one allowed polarisation state for each particle or antiparticle. For parts (a) through (c) below, assume that all three species are exactly massless

(a) It is reasonable to assume that for each species, the concentration of neutrinos equals the concentration of antineutrinos, so that their chemical potentials are equal: μν=μν¯. Furthermore, neutrinos and antineutrinos can be produced and annihilated in pairs by the reaction

ν+ν¯2γ

(where y is a photon). Assuming that this reaction is at equilibrium (as it would have been in the very early universe), prove that u =0 for both the neutrinos and the antineutrinos.

(b) If neutrinos are massless, they must be highly relativistic. They are also fermions: They obey the exclusion principle. Use these facts to derive a formula for the total energy density (energy per unit volume) of the neutrino-antineutrino background radiation. differences between this "neutrino gas" and a photon gas. Antiparticles still have positive energy, so to include the antineutrinos all you need is a factor of 2. To account for the three species, just multiply by 3.) To evaluate the final integral, first change to a dimensionless variable and then use a computer or look it up in a table or consult Appendix B. (Hint: There are very few

(c) Derive a formula for the number of neutrinos per unit volume in the neutrino background radiation. Evaluate your result numerically for the present neutrino temperature of 1.95 K.

d) It is possible that neutrinos have very small, but nonzero, masses. This wouldn't have affected the production of neutrinos in the early universe, when me would have been negligible compared to typical thermal energies. But today, the total mass of all the background neutrinos could be significant. Suppose, then, that just one of the three species of neutrinos (and the corresponding antineutrino) has a nonzero mass m. What would mc2 have to be (in eV), in order for the total mass of neutrinos in the universe to be comparable to the total mass of ordinary matter?

The sun is the only star whose size we can easily measure directly; astronomers therefore estimate the sizes of other stars using Stefan's law.

(a) The spectrum of Sirius A, plotted as a function of energy, peaks at a photon energy of2.4eV, while Sirius A is approximately 24times as luminous as the sun. How does the radius of Sirius A compare to the sun's radius?

(b) Sirius B, the companion of Sirius A (see Figure 7.12), is only role="math" localid="1647765883396" 3%as luminous as the sun. Its spectrum, plotted as a function of energy, peaks at about7eV. How does its radius compare to that of the sun?

(c) The spectrum of the star Betelgeuse, plotted as a function of energy, peaks at a photon energy of 0.8eV, while Betelgeuse is approximately10,000times as luminous as the sun. How does the radius of Betelgeuse compare to the sun's radius? Why is Betelgeuse called a "red supergiant"?

Consider a gas of noninteracting spin-0 bosons at high temperatures, when TTc. (Note that “high” in this sense can still mean below 1 K.)

  1. Show that, in this limit, the Bose-Einstein function can be written approximately as
    n¯BE=e(μ)/kT[1+eμ/kT+].
  2. Keeping only the terms shown above, plug this result into equation 7.122 to derive the first quantum correction to the chemical potential for gas of bosons.
  3. Use the properties of the grand free energy (Problems 5.23 and 7.7) to show that the pressure of any system is given by In P=(kT/V), where Zis the grand partition function. Argue that, for gas of noninteracting particles, In Zcan be computed as the sum over all modes (or single-particle states) of In Zi, where Zi; is the grand partition function for the ithmode.
  4. Continuing with the result of part (c), write the sum over modes as an integral over energy, using the density of states. Evaluate this integral explicitly for gas of noninteracting bosons in the high-temperature limit, using the result of part (b) for the chemical potential and expanding the logarithm as appropriate. When the smoke clears, you should find
    p=NkTV(1NvQ42V),
    again neglecting higher-order terms. Thus, quantum statistics results in a lowering of the pressure of a boson gas, as one might expect.
  5. Write the result of part (d) in the form of the virial expansion introduced in Problem 1.17, and read off the second virial coefficient, B(T). Plot the predicted B(T)for a hypothetical gas of noninteracting helium-4 atoms.
  6. Repeat this entire problem for gas of spin-1/2 fermions. (Very few modifications are necessary.) Discuss the results, and plot the predicted virial coefficient for a hypothetical gas of noninteracting helium-3 atoms.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free