Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that when a system is in thermal and diffusive equilibrium with a reservoir, the average number of particles in the system is

N=kTZZμ

where the partial derivative is taken at fixed temperature and volume. Show also that the mean square number of particles is

N2¯=(kT)2Z2Zμ2

Use these results to show that the standard deviation of Nis

σN=kTN/μ,

in analogy with Problem6.18Finally, apply this formula to an ideal gas, to obtain a simple expression forσNin terms ofN¯Discuss your result briefly.

Short Answer

Expert verified

The simple expression forσN in terms ofN¯isσN=kTNμ.

Step by step solution

01

Given Information 

We have to given the average number of particles in the system isN=kTZZμ, the mean square number of particles is N2¯=(kT)2Z2Zμ2and the standard deviation of NisσN=kTN/μ.

02

Simplify

The grand partition function equals the sum over the Gibbs factors, that is:

Z=seEsμNs/kT

take the partial derivative of the partition function with respect to , so :

Zμ=1kTsNseEsμNs/kTsNseEsμNs/kT=kTZμ

dividing both sides by the grand partition function to get:

1ZsNseEsμNs/kT=kTZZμ

the LHS is just the average N, so:

localid="1650885600621" N=kTZZμ ...(1)

take the partial derivative again for the grand partition function with respect toμ, to get:

localid="1650885614351" 2Zμ2=1k2T2s(Ns)2eEsμNs/kTs(Ns)2eEsμNs/kT=k2T22Zμ2

03

Calculation

Dividing both sides by the grand partition function to get:

1Zs(Ns)2eEsμNs/kT=k2T2Z2Zμ2

the LHS is just the average N2, therefore:

localid="1650885704869" N2=k2T2Z2Zμ2 ...(2)

take the partial derivative for the average number of particles with respect to μto get:

localid="1650885695468" role="math" Nμ=μ1ZsNseEsμNs/kTNμ=1Z2ZμsNseEsμNs/kT+1ZkTs(Ns)2eEsμNs/kT

substitute from (1) and (2) to get:

Nμ=NkTN+N2kTNμ=N2kT+N2kTkTNμ=N2N2

the standard deviation is defined as:

σN2=N2N2

combine this equation with the previous one to get:

σN2=kTNμσN=kTNμ

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Although the integrals (7.53and 7.54) forNand Ucannot be

carried out analytically for all T, it's not difficult to evaluate them numerically

using a computer. This calculation has little relevance for electrons in metals (for

which the limit kT<<EFis always sufficient), but it is needed for liquid H3eand

for astrophysical systems like the electrons at the center of the sun.

(a) As a warm-up exercise, evaluate theNintegral (7.53) for the casekT=εF

and μ=0, and check that your answer is consistent with the graph shown

above. (Hint: As always when solving a problem on a computer, it's best to

first put everything in terms of dimensionless variables. So let t=kTεFrole="math" localid="1649996205331" ,c=μεF

, and x=εkT. Rewrite everything in terms of these variables,

and then put it on the computer.)

(b) The next step is to varyμ holdingT fixed, until the integral works out to

the desired value,N. Do this for values of kTεFranging from 0.1 up to 2,

and plot the results to reproduce Figure7.16. (It's probably not a good idea

to try to use numerical methods when kTεF is much smaller than 0.1, since

you can start getting overflow errors from exponentiating large numbers.

But this is the region where we've already solved the problem analytically.)

(c) Plug your calculated values ofµ into the energy integral (7.54), and evaluate

that integral numerically to obtain the energy as a function of temperature

forkTup to 2εF Plot the results, and evaluate the slope to obtain the

heat capacity. Check that the heat capacity has the expected behavior at

both low and high temperatures.

In Section 6.5 I derived the useful relation F=-kTln(Z)between the Helmholtz free energy and the ordinary partition function. Use analogous argument to prove that ϕ=-kT×ln(Z^), where Z^ is the grand partition function and ϕis the grand free energy introduced in Problem 5.23.

The tungsten filament of an incandescent light bulb has a temperature of approximately 3000K. The emissivity of tungsten is approximately 13, and you may assume that it is independent of wavelength.

(a) If the bulb gives off a total of 100watts, what is the surface area of its filament in square millimetres?

(b) At what value of the photon energy does the peak in the bulb's spectrum occur? What is the wavelength corresponding to this photon energy?

(c) Sketch (or use a computer to plot) the spectrum of light given off by the filament. Indicate the region on the graph that corresponds to visible wavelengths, between400and700nm.

(d) Calculate the fraction of the bulb's energy that comes out as visible light. (Do the integral numerically on a calculator or computer.) Check your result qualitatively from the graph of part (c).

( e) To increase the efficiency of an incandescent bulb, would you want to raise or lower the temperature? (Some incandescent bulbs do attain slightly higher efficiency by using a different temperature.)

(f) Estimate the maximum possible efficiency (i.e., fraction of energy in the visible spectrum) of an incandescent bulb, and the corresponding filament temperature. Neglect the fact that tungsten melts at 3695K.

Prove that the peak of the Planck spectrum is at x = 2.82.

A ferromagnet is a material (like iron) that magnetizes spontaneously, even in the absence of an externally applied magnetic field. This happens because each elementary dipole has a strong tendency to align parallel to its neighbors. At t=0the magnetization of a ferromagnet has the maximum possible value, with all dipoles perfectly lined up; if there are Natoms, the total magnetization is typically~2μeN, where µa is the Bohr magneton. At somewhat higher temperatures, the excitations take the form of spin waves, which can be visualized classically as shown in Figure 7.30. Like sound waves, spin waves are quantized: Each wave mode can have only integer multiples of a basic energy unit. In analogy with phonons, we think of the energy units as particles, called magnons. Each magnon reduces the total spin of the system by one unit of h21rand therefore reduces the magnetization by ~2μe. However, whereas the frequency of a sound wave is inversely proportional to its wavelength, the frequency of a spin-wave is proportional to the square of 1λ.. (in the limit of long wavelengths). Therefore, since=hfand p=hλ.. for any "particle," the energy of a magnon is proportional

In the ground state of a ferromagnet, all the elementary dipoles point in the same direction. The lowest-energy excitations above the ground state are spin waves, in which the dipoles precess in a conical motion. A long-wavelength spin wave carries very little energy because the difference in direction between neighboring dipoles is very small.

to the square of its momentum. In analogy with the energy-momentum relation for an ordinary nonrelativistic particle, we can write =p22pm*, wherem* is a constant related to the spin-spin interaction energy and the atomic spacing. For iron, m* turns out to equal 1.24×1029kg, about14times the mass of an electron. Another difference between magnons and phonons is that each magnon ( or spin-wave mode) has only one possible polarization.

(a) Show that at low temperatures, the number of magnons per unit volume in a three-dimensional ferromagnet is given by

NmV=2π2m×kTh2320xex-1dx.

Evaluate the integral numerically.

(b) Use the result of part (a) to find an expression for the fractional reduction in magnetization, (M(O)-M(T))/M(O).Write your answer in the form (T/To)32, and estimate the constantT0for iron.

(c) Calculate the heat capacity due to magnetic excitations in a ferromagnet at low temperature. You should find Cv/Nk=(T/Ti)32, where Tidiffers from To only by a numerical constant. EstimateTifor iron, and compare the magnon and phonon contributions to the heat capacity. (The Debye temperature of iron is 470k.)

(d) Consider a two-dimensional array of magnetic dipoles at low temperature. Assume that each elementary dipole can still point in any (threedimensional) direction, so spin waves are still possible. Show that the integral for the total number of magnons diverge in this case. (This result is an indication that there can be no spontaneous magnetization in such a two-dimensional system. However, in Section 8.2we will consider a different two-dimensional model in which magnetization does occur.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free