Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The tungsten filament of an incandescent light bulb has a temperature of approximately 3000K. The emissivity of tungsten is approximately 13, and you may assume that it is independent of wavelength.

(a) If the bulb gives off a total of 100watts, what is the surface area of its filament in square millimetres?

(b) At what value of the photon energy does the peak in the bulb's spectrum occur? What is the wavelength corresponding to this photon energy?

(c) Sketch (or use a computer to plot) the spectrum of light given off by the filament. Indicate the region on the graph that corresponds to visible wavelengths, between400and700nm.

(d) Calculate the fraction of the bulb's energy that comes out as visible light. (Do the integral numerically on a calculator or computer.) Check your result qualitatively from the graph of part (c).

( e) To increase the efficiency of an incandescent bulb, would you want to raise or lower the temperature? (Some incandescent bulbs do attain slightly higher efficiency by using a different temperature.)

(f) Estimate the maximum possible efficiency (i.e., fraction of energy in the visible spectrum) of an incandescent bulb, and the corresponding filament temperature. Neglect the fact that tungsten melts at 3695K.

Short Answer

Expert verified

(a) The surface area of its filament is A=65.3mm2.

(b) The wavelength corresponding to this photon energy isλ=1.70×10-7m.

(c) The spectrum of the light given off is 1.70×10-7m

(d) The fraction of the bulb's energy that comes out as visible light isf=0.08124.

(e) To increase the efficiency of the incandescent bulb we will raise the temperature.

(f) The maximum possible efficiency is achieved at temperatureT=7032K.

Step by step solution

01

Part(a): Step 1: Given information

We have been given that the total watts given off by a bulb are100.

02

Part(a): Step 2: Solution

Irradiated power is given byP=AeσT4

RearrangingA=PeσT4

Putting in the given values and universal constants =100W135.67×10-8W/m2K4(3000K)4

A=6.53×10-5m2A=6.53×10-5×106mm2A=65.3mm2

03

Part(b): Step 1: Given information

We have to find out at what value of the photon energy does the peak in the bulb's spectrum occur

04

Part(b): Step 2: Solution

Spectrum is given byu(T)=8π(hc)3ϵ3eϵ/kT-1

letx=ϵ/kT

u(T)=8π(kT)3(hc)3x3ex-1

For peak, partial derivative = 0

xx3ex-1=0

3x2ex-1-x3exex-12=0

3x2ex-1-x3ex=0

3ex-3-xex=0

x=2.8214

Alsoϵ=xkT

ϵ=(2.8214)13.8×10-23J/K(3000K)

ϵ=1.168×10-18J

Wavelength ϵ=hc/λ

λ=hcϵ

λ=1.70×10-7m

05

Part(c) Step 1:Given information

We have been given thatϵ400nm=6.626×10-34J·s3.0×108m/s400×10-9m=4.97×10-19=3.1eV

06

Part(c) Step 2:Simplify

The graph of this part as shown

07

Part(d) Step 1:Given information

We have been given thatf=UvisUtot

08

Part(d) Step 2:Simplify

The integration of the range of visible energy is

Uϵ3eϵ/kT-1dϵUvisvisx3ex-1dx

The boundaries are

x2=ϵ400nmkT=3.1eV8.62×10-5eV/K(3000K)=11.987

x1=ϵ700nmkT=1.77eV8.62×10-5eV/K(3000K)=6.845

09

Part(e) Step 1: Given information

We have been given thatf=15π4x1x2x3ex-1dx

10

Part(e) Step 2: Simplify

As the temperature increases,the efficiency increases

x2=ϵ400nmkTx1=ϵ700nmkT

11

Part(f) Step 1:Given information

We have been given thatx2=74x1

12

Part(f) Step 2:Simplify

The tempreature at this point is:

T=ϵ700nmkx1=1.77eV8.62×10-5eV/K(2.92)=7032K

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A ferromagnet is a material (like iron) that magnetizes spontaneously, even in the absence of an externally applied magnetic field. This happens because each elementary dipole has a strong tendency to align parallel to its neighbors. At t=0the magnetization of a ferromagnet has the maximum possible value, with all dipoles perfectly lined up; if there are Natoms, the total magnetization is typically~2μeN, where µa is the Bohr magneton. At somewhat higher temperatures, the excitations take the form of spin waves, which can be visualized classically as shown in Figure 7.30. Like sound waves, spin waves are quantized: Each wave mode can have only integer multiples of a basic energy unit. In analogy with phonons, we think of the energy units as particles, called magnons. Each magnon reduces the total spin of the system by one unit of h21rand therefore reduces the magnetization by ~2μe. However, whereas the frequency of a sound wave is inversely proportional to its wavelength, the frequency of a spin-wave is proportional to the square of 1λ.. (in the limit of long wavelengths). Therefore, since=hfand p=hλ.. for any "particle," the energy of a magnon is proportional

In the ground state of a ferromagnet, all the elementary dipoles point in the same direction. The lowest-energy excitations above the ground state are spin waves, in which the dipoles precess in a conical motion. A long-wavelength spin wave carries very little energy because the difference in direction between neighboring dipoles is very small.

to the square of its momentum. In analogy with the energy-momentum relation for an ordinary nonrelativistic particle, we can write =p22pm*, wherem* is a constant related to the spin-spin interaction energy and the atomic spacing. For iron, m* turns out to equal 1.24×1029kg, about14times the mass of an electron. Another difference between magnons and phonons is that each magnon ( or spin-wave mode) has only one possible polarization.

(a) Show that at low temperatures, the number of magnons per unit volume in a three-dimensional ferromagnet is given by

NmV=2π2m×kTh2320xex-1dx.

Evaluate the integral numerically.

(b) Use the result of part (a) to find an expression for the fractional reduction in magnetization, (M(O)-M(T))/M(O).Write your answer in the form (T/To)32, and estimate the constantT0for iron.

(c) Calculate the heat capacity due to magnetic excitations in a ferromagnet at low temperature. You should find Cv/Nk=(T/Ti)32, where Tidiffers from To only by a numerical constant. EstimateTifor iron, and compare the magnon and phonon contributions to the heat capacity. (The Debye temperature of iron is 470k.)

(d) Consider a two-dimensional array of magnetic dipoles at low temperature. Assume that each elementary dipole can still point in any (threedimensional) direction, so spin waves are still possible. Show that the integral for the total number of magnons diverge in this case. (This result is an indication that there can be no spontaneous magnetization in such a two-dimensional system. However, in Section 8.2we will consider a different two-dimensional model in which magnetization does occur.)

Consider a two-dimensional solid, such as a stretched drumhead or a layer of mica or graphite. Find an expression (in terms of an integral) for the thermal energy of a square chunk of this material of area , and evaluate the result approximately for very low and very high temperatures. Also, find an expression for the heat capacity, and use a computer or a calculator to plot the heat capacity as a function of temperature. Assume that the material can only vibrate perpendicular to its own plane, i.e., that there is only one "polarization."

Change variables in equation 7.83 to λ=hc/ϵ and thus derive a formula for the photon spectrum as a function of wavelength. Plot this spectrum, and find a numerical formula for the wavelength where the spectrum peaks, in terms of hc/kT. Explain why the peak does not occur at hc/(2.82kT).

Figure 7.37 shows the heat capacity of a Bose gas as a function of temperature. In this problem you will calculate the shape of this unusual graph.

(a) Write down an expression for the total energy of a gas of Nbosons confined to a volume V, in terms of an integral (analogous to equation 7.122).

(b) For T<Tcyou can set μ=0. Evaluate the integral numerically in this case, then differentiate the result with respect to Tto obtain the heat capacity. Compare to Figure 7.37.

(c) Explain why the heat capacity must approach 32Nkin the high- Tlimit.

(d) For T>Tcyou can evaluate the integral using the values of μcalculated in Problem 7.69. Do this to obtain the energy as a function of temperature, then numerically differentiate the result to obtain the heat capacity. Plot the heat capacity, and check that your graph agrees with Figure 7.37.

Figure 7.37. Heat capacity of an ideal Bose gas in a three-dimensional box.

Consider a system consisting of a single impurity atom/ion in a semiconductor. Suppose that the impurity atom has one "extra" electron compared to the neighboring atoms, as would a phosphorus atom occupying a lattice site in a silicon crystal. The extra electron is then easily removed, leaving behind a positively charged ion. The ionized electron is called a conduction electron because it is free to move through the material; the impurity atom is called a donor, because it can "donate" a conduction electron. This system is analogous to the hydrogen atom considered in the previous two problems except that the ionization energy is much less, mainly due to the screening of the ionic charge by the dielectric behavior of the medium.

(a) Write down a formula for the probability of a single donor atom being ionized. Do not neglect the fact that the electron, if present, can have two independent spin states. Express your formula in terms of the temperature, the ionization energy I, and the chemical potential of the "gas" of ionized electrons.

(b) Assuming that the conduction electrons behave like an ordinary ideal gas (with two spin states per particle), write their chemical potential in terms of the number of conduction electrons per unit volume,NcV.

(c) Now assume that every conduction electron comes from an ionized donor atom. In this case the number of conduction electrons is equal to the number of donors that are ionized. Use this condition to derive a quadratic equation for Ncin terms of the number of donor atoms Nd, eliminatingµ. Solve for Ncusing the quadratic formula. (Hint: It's helpful to introduce some abbreviations for dimensionless quantities. Tryx=NcNd,t=kTland so on.)

(d) For phosphorus in silicon, the ionization energy is localid="1650039340485" 0.044eV. Suppose that there are 1017patoms per cubic centimeter. Using these numbers, calculate and plot the fraction of ionized donors as a function of temperature. Discuss the results.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free