Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove that the peak of the Planck spectrum is at x = 2.82.

Short Answer

Expert verified

Hence proved that plank's spectrum is at x = 2.82.

Step by step solution

01

Given information

The peak of the Planck spectrum is at e = 2.82.

02

Explanation

Set the derivative of x3/ex-1with respect to x equals to zero to get the maximum, then solve for:

โˆ‚โˆ‚xx3ex-1=03x2ex-1-x3exex-12=03x2ex-1-x3ex=03x2ex-3x2-x3ex=03ex-3-xex=0

Using matlab to solve the above equation: The code is:

Therefore,x=2.8214

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At the center of the sun, the temperature is approximately 107K and the concentration of electrons is approximately 1032 per cubic meter. Would it be (approximately) valid to treat these electrons as a "classical" ideal gas (using Boltzmann statistics), or as a degenerate Fermi gas (with Tโ‰ˆ0 ), or neither?

Evaluate the integrand in equation 7.112as a power series in x, keeping terms through x4โ€ข Then carry out the integral to find a more accurate expression for the energy in the high-temperature limit. Differentiate this expression to obtain the heat capacity, and use the result to estimate the percent deviation of Cvfrom3NkatT=TDandT=2TD.

The planet Venus is different from the earth in several respects. First, it is only 70% as far from the sun. Second, its thick clouds reflect 77%of all incident sunlight. Finally, its atmosphere is much more opaque to infrared light.

(a) Calculate the solar constant at the location of Venus, and estimate what the average surface temperature of Venus would be if it had no atmosphere and did not reflect any sunlight.

(b) Estimate the surface temperature again, taking the reflectivity of the clouds into account.

(c) The opaqueness of Venus's atmosphere at infrared wavelengths is roughly 70times that of earth's atmosphere. You can therefore model the atmosphere of Venus as 70successive "blankets" of the type considered in the text, with each blanket at a different equilibrium temperature. Use this model to estimate the surface temperature of Venus. (Hint: The temperature of the top layer is what you found in part (b). The next layer down is warmer by a factor of 21/4. The next layer down is warmer by a smaller factor. Keep working your way down until you see the pattern.)

Consider the electromagnetic radiation inside a kiln, with a volume of V= I m3 and a temperature of 1500 K.

(a) What is the total energy of this radiation?

(b) Sketch the spectrum of the radiation as a function of photon energy.

(c) What fraction of all the energy is in the visible portion of the spectrum, with wavelengths between 400 nm and 700 nm?

Consideracollectionof10,000atomsofrubidium-87,confinedinsideaboxofvolume(10-5m)3.(a)Calculateฮต0,theenergyofthegroundstate.(Expressyouranswerinbothjoulesandelectron-volts.)(b) Calculate the condensation temperature, and comparekTctoฯต0. (c)SupposethatT=0.9Tc.Howmanyatomsareinthegroundstate?Howcloseisthechemicalpotentialtotheground-stateenergy?Howmanyatomsareineachofthe(threefold-degenerate)firstexcitedstates?(d)Repeatparts(b)and(c)forthecaseof106atoms,confinedtothesamevolume.Discusstheconditionsunderwhichthenumberofatomsinthegroundstatewillbemuchgreaterthanthenumberinthefirstexcitedstate.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free