Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a real semiconductor, the density of states at the bottom of the conduction band will differ from the model used in the previous problem by a numerical factor, which can be small or large depending on the material. Let us, therefore, write for the conduction band g(ϵ)=g0cϵ-ϵcwhere g0cis a new normalization constant that differs from g0by some fudge factor. Similarly, write gat the top of the valence band in terms of a new normalization constant g0v.

(a) Explain why, if g0vg0c, the chemical potential will now vary with temperature. When will it increase, and when will it decrease?

(b) Write down an expression for the number of conduction electrons, in terms of T,μ,candg0cSimplify this expression as much as possible, assuming ϵc-μkT.

(c) An empty state in the valence band is called a hole. In analogy to part (b), write down an expression for the number of holes, and simplify it in the limit μ-ϵvkT.

(d) Combine the results of parts (b) and (c) to find an expression for the chemical potential as a function of temperature.

(e) For silicon, g0cg0=1.09andg0vg0=0.44*.Calculate the shift inµ for silicon at room temperature.

Short Answer

Expert verified

(a) The chemical potential will varyNC=g0cϵCϵ-ϵCeϵ-ϵF/kT+1dϵ

(b) The number of conduction electronsNCg0cπ2(kT)3/2e-ϵC-μ/kT

(c) The valence bond isNv=g0vπ2e-μ-ϵv/kT(kT)3/2

(d) The chemical potential isμ=ϵC+ϵv2-kT2lng0cg0v

(e) The shift for silicon isμshift=-0.0118eV

Step by step solution

01

Part(a) Step 1: Given information

We have been given that g(ϵ)=g0cϵ-ϵC

02

Part(a) Step 2: Given information

The solution is as follows:

NC=ϵCg(ϵ)n¯FDdϵ

NC=g0cϵCϵ-ϵCeϵ-ϵF/kT+1dϵ

03

Part(b) Step 1: Given information

We have been given thatπ2

04

Part(b) Step 2: Simplify

The numbers of electrons in the conduction

0xe-xdx=π2

NCg0cπ2(kT)3/2e-ϵC-μ/kT

05

Part(c) Step 1: GIven information

We have been given that NCV

06

Part(c) Step 2: Simplify

The solution is as follows:

n¯FD=1e(ϵ-μ)/kT+1g(ϵ)=g0vϵv-ϵ

Nv=g0vπ2e-μ-ϵv/kT(kT)3/2

07

Part (d) Step 1: Given information

We have been givenNT3/2e-c/T

08

Part(d) Step 2:Simplify

The temperature increases

vQ=6.626×10-34J·s22π9.11×10-31kg1.38×10-23J/K(350K)3/2

=6.328×10-26m3

09

Given information

We have been given thatNCV

10

Simplify

The steps are given below

NCV=2m-3=28.00×10-26m3e-Δϵ/(0.052eV)

Δϵ=3.0eV

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The previous two problems dealt with pure semiconductors, also called intrinsic semiconductors. Useful semiconductor devices are instead made from doped semiconductors, which contain substantial numbers of impurity atoms. One example of a doped semiconductor was treated in Problem 7.5. Let us now consider that system again. (Note that in Problem 7.5 we measured all energies relative to the bottom of the conduction band, Ee. We also neglected the distinction between g0and g0c; this simplification happens to be ok for conduction electrons in silicon.)

(a) Calculate and plot the chemical potential as afunction of temperature, for silicon doped with 1017phosphorus atoms per cm3(as in Problem 7.5). Continue to assume that the conduction electrons can be treated as an ordinary ideal gas.

(b) Discuss whether it is legitimate to assume for this system that the conduction electrons can be treated asan ordinary ideal gas, as opposed to a Fermi gas. Give some numerical examples.

(c)Estimate the temperature at which the number of valence electrons excitedto the conduction band would become comparable to the number ofconduction electrons from donor impurities. Which source of conductionelectrons is more important at room temperature?

The heat capacity of liquid H4ebelow 0.6Kis proportional to T3, with the measured valueCV/Nk=(T/4.67K)3. This behavior suggests that the dominant excitations at low temperature are long-wavelength photons. The only important difference between photons in a liquid and photons in a solid is that a liquid cannot transmit transversely polarized waves-sound waves must be longitudinal. The speed of sound in liquid He4is 238m/s, and the density is 0.145g/cm3. From these numbers, calculate the photon contribution to the heat capacity ofHe4in the low-temperature limit, and compare to the measured value.

(a) As usual when solving a problem on a computer, it's best to start by putting everything in terms of dimensionless variables. So define t=T/Tcc=μ/kTc,andx=ϵ/kTc. Express the integral that defines μ, equation 7.122, in terms of these variables. You should obtain the equation

(b) According to Figure 7.33, the correct value of cwhen T=2Tcis approximately -0.8. Plug in these values and check that the equation above is approximately satisfied.

(c) Now vary μ, holding Tfixed, to find the precise value of μfor . Repeat for values of T/Tcranging from 1.2up to 3.0, in increments of 0.2. Plot a graph of μas a function of temperature.

For a system of bosons at room temperature, compute the average occupancy of a single-particle state and the probability of the state containing 0,1,2,3bosons, if the energy of the state is

(a) 0.001eVgreater than μ

(b) 0.01eVgreater than μ

(c) 0.1eVgreater than μ

(d) 1eVgreater than μ

If you have a computer system that can do numerical integrals, it's not particularly difficult to evaluate μfor T>Tc.

(a) As usual when solving a problem on a computer, it's best to start by putting everything in terms dimensionless variables. So define t=T/Tc,c=μ/kTc,andx=ϵ/kTc. Express the integral that defines μ, equation N=0g(ϵ)1e(ϵ-μ)/kT-1dϵ, in terms of these variables, you should obtain the equation

2.315=0xdxe(x-c)/t-1

(b) According to given figure , the correct value of cwhen T=2Tc, is approximately -0.8. Plug in these values and check that the equation above is approximately satisfied.

(c) Now vary μ, holding Tfixed, to find the precise value of μfor T=2Tc. Repeat for values ofT/Tcranging from 1.2up to 3.0, in increments of 0.2. Plot a graph of μas a function of temperature.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free